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Abstract
Neural machine translation today has achieved state-of-the-art performance for ma-
chine translation, yet it is facing the problem of domain mismatch due to scarce data.
Recently researchers have proposed many techniques to tackle this problem, including
fine-tuning, building multi-domain system, sentence weighting, etc. In this project,
we try to improve sentence weighting, and propose a novel tag-and-weight technique
which uses sentence weighting when building a multi-domain system. Then, we ar-
gue that sentence weighting is a trivial case of weighting words. Thus, we move one
step further to propose word level weighting for neural machine translation domain
adaptation, based on word frequencies and language model scores. We evaluate our
approaches using Romanian to English and English to German translation tasks with
different domain specificity. Experiments show that our proposed approaches achieve
improved performance. The top-performing tag-and-weight achieves on average 0.6
BLEU increase comparing to current state-of-the-art techniques. Finally, our in-depth
analysis indicates that our proposed approaches are able to recall more named entities
in a domain, and that tag-and-weight has a strong domain differentiating capability.
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1 | Introduction

Machine translation is a sub-field of Natural Language Processing (NLP), where trans-
lation from one language to another is done automatically by a computer. The first idea
was to convert words or phrases one by one using a dictionary or rules, with linguis-
tic features taken into consideration. This is called rule-based machine translation
(Nirenburg, 1989). Later, a similar example-based approach was invented, which finds
template sentences in available translation examples and only deals with the new words
in new sentences (Nagao, 1984). Then in 1990, machine translation entered the era of
statistical machine translation (SMT), where translations are produced by a probabilis-
tic model, parameterised on bilingual and monolingual corpora containing millions of
sentences (Koehn et al., 2007). The statistical model produces a translation with the
maximum probability given a sentence. Breaking down to word level, SMT models the
probability of translating a word to another, and that of a word given previous words.
Such probabilities in an SMT can be learned at various levels such as words, phrases,
syntactic units and context-free grammars.

Since 2013, the research on machine translation has been shifting towards neural ma-
chine translation (NMT) using neural networks (Kalchbrenner and Blunsom, 2013;
Cho et al., 2014b), and recently it has achieved the most promising performance com-
pared to other approaches mentioned above (Bojar et al., 2016, 2017). Unlike SMT,
NMT uses deep neural network trained on bilingual parallel corpora to model the trans-
lation probabilities. It is shown that NMT produces vastly more fluent results than SMT
(Skadina and Pinnis, 2017).

An obvious trend we observe from the history of machine translation is that the amount
of data required to build a system is growing exponentially, from rules to some template
translations, and now to huge parallel corpora of millions of sentences. However, it is
hard to find a large corpus in the exact same domain as we want to use the system, due
to the scarcity of high-quality corpora (Chu and Wang, 2018).

As a result, one problem NMT suffers from is domain mismatch, which arises when
a machine translation model learns from data in a certain domain and translates texts
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in another domain (Koehn and Knowles, 2017). Several reasons can account for this
problem. First, words and phrases can have different meanings in different domains
(polysemy and homonymy), such as “zip”, “run” and “cat” seen in daily life and com-
puter science terms. Another reason is that texts in different domains can be in differ-
ent writing styles, leading to different spelling, choice of word, word order, sentence
length, etc. Also, a new domain can have words that are never seen by the model,
which thus can nearly never be produced. We present in Table 1.1 a case of using
online translators to translate statistics terminology “二元分类 (binary classification)”
from Chinese to English. Mainstream generic translators like Google, Bing and Baidu
gave results of various quality1 due to domain mismatch.

Source 二元分类

Reference binary classification
Baidu two element classification
Bing binary categories

Google binary classification

Table 1.1: Online results for translating statistics terminology from Chinese to English

From the results, we see that all online translators were able to produce fluent results
that convey the semantics of our original term. “Binary” essentially means something
involving “two element(s)” and “category” is a synonym to “class(ification)”. How-
ever, Bing and Baidu could not produce our desired terminology. A translation that
only conveys the same semantics is not excellent or professional, if a domain-specific
writing style is expected in certain scenarios, like academic writing, legal documents,
medical prescriptions and technology patents, just to name a few.

To alleviate the above problem, many researchers have worked on adapting NMT to a
specific domain from both data and model perspectives (Chu and Wang, 2018). Meth-
ods from data perspective include building a multi-domain system and controlling out-
put domain (Sennrich et al., 2016a), synthesising domain specific parallel corpora from
monolingual text (Sennrich et al., 2016c; Park et al., 2017), as well as data selection
and cut-off (Wang et al., 2017a; van der Wees et al., 2017).

At model level, successful techniques include weighting objective function (cost) at
sentence level (Chen et al., 2017; Wang et al., 2017b; Zhang and Xiong, 2018), combin-
ing domain specific language model and NMT system (Gulcehre et al., 2015; Domhan
and Hieber, 2017), ensembling systems trained on different domains (Freitag and Al-
Onaizan, 2016), neural lattice search (Khayrallah et al., 2017), fine tuning (Luong and
Manning, 2015) and mixed fine tuning (Chu et al., 2017).

1Translations were done on 18 Mar 2019 on the three online platforms.
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Chapter 1. Introduction

Following a comprehensive review of relevant approaches, we make four contributions
to the NMT domain adaptation research, detailed as follows:

1. We reproduce and try to improve sentence weighting (Wang et al., 2017b) by
increasing domain discrimination effect.

2. We propose a novel tag-and-weight approach, that uses source side domain tags
as well as applies sentence weighting. The approach combines sentence weight-
ing (Wang et al., 2017b) and multi-domain NMT (Sennrich et al., 2016a), and
achieves substantial improvement of 0.6 and 0.85 BLEU over sentence weight-
ing and multi-domain respectively on English to German translation.

3. We explore three word-level weighting schemes, based on word frequency and
language model scores. One approach using a logarithmic frequency ratio achieves
0.6 BLEU higher than sentence weighting on Romanian to English.

4. We design another new sentence weighting by summing up the ratio of logarith-
mic word frequency. It outperforms sentence weighting by 0.2 BLEU on English
to German and 0.8 BLEU on Romanian to English.

To the best of our knowledge, currently there is no established literature on word
weighting for neural machine translation domain adaptation. The motivation for our
work on word weighting is simple yet elegant. In a neural network, weighting sen-
tences is a trivial case of weighting words because sentence loss is computed as the
sum of word losses. Word weighting will lead to a weighted sum being calculated.

The rest of the dissertation starts with a background introduction in Chapter 2, where
we introduce the technical background of neural machine translation and related work
on domain adaptation. Then, in Chapter 3 we improve sentence weighting and propose
a new domain adaptation technique. In Chapter 4, we state our motivation and propose
three novel word weighting schemes based on word frequency and language model
scores. In the following Chapter 5, we describe our experiments on two datasets, as
well as present experiment results. We continue to analyse and find reasons behind the
results in Chapter 6. Finally, in Chapter 7 we summarise our work and provide future
work directions.
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2 | Background

In this chapter, we describe the technical background of neural machine translation
and language modelling, from mathematics to architectures. After that, we introduce
the data and evaluation for machine translation. Finally, the later sections present the
problem of domain mismatch and solutions related to our work.

2.1 Recurrent Neural Networks

Neural machine translation is based on Deep Learning in neural networks, which are
formed with input, hidden and output layers of neurons. The neurons can be regarded
as nodes with differentiable non-linear functions (e.g. logistic), connected to other
neurons (nodes) in adjacent layers. Each neuron outputs the value calculated from its
function, applied on the weighted sum of values from the previous layer’s neurons (or
directly from input), shown in Equation 2.1 in matrix notation:

yW,b(x) = f (W T x+b) (2.1)

where y denotes the output, f denotes an activation function, W denotes weights, x
denotes inputs and b denotes a bias term. The weights are initialised using a certain
scheme (e.g. random or all-zero). The output from a neuron becomes the input of its
connected neurons in the next layer. Hence as a whole, a neural network model is able
to distort and propagate the input through its internal layers to produce an output. The
process is called forward propagation and the output is the value we want, such as a
word or a label.

To find the ideal weights and bias terms (parameters) for a neural network, backprop-
agation is used (Rumelhart et al., 1986; LeCun et al., 2012). First, a cost (error) is
computed using some objective (cost) function (e.g. cross-entropy or mean squared
error) on the output and expected values. Next, error derivatives with respect to each
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2.1. Recurrent Neural Networks

parameter in the model are calculated. Then the parameters are increased by the prod-
uct of error derivatives and a constant called learning rate. Forward propagation and
backpropagation are done for many iterations on training data until a certain criterion
is met. The two processes are illustrated in Figure 2.1.

be seen as a kind of hilly landscape in the high-dimensional space of 
weight values. The negative gradient vector indicates the direction 
of steepest descent in this landscape, taking it closer to a minimum, 
where the output error is low on average. 

In practice, most practitioners use a procedure called stochastic 
gradient descent (SGD). This consists of showing the input vector 
for a few examples, computing the outputs and the errors, computing 
the average gradient for those examples, and adjusting the weights 
accordingly. The process is repeated for many small sets of examples 
from the training set until the average of the objective function stops 
decreasing. It is called stochastic because each small set of examples 
gives a noisy estimate of the average gradient over all examples. This 
simple procedure usually finds a good set of weights surprisingly 
quickly when compared with far more elaborate optimization tech-
niques18. After training, the performance of the system is measured 
on a different set of examples called a test set. This serves to test the 
generalization ability of the machine — its ability to produce sensible 
answers on new inputs that it has never seen during training. 

Many of the current practical applications of machine learning use 
linear classifiers on top of hand-engineered features. A two-class linear 
classifier computes a weighted sum of the feature vector components. 
If the weighted sum is above a threshold, the input is classified as 
belonging to a particular category. 

Since the 1960s we have known that linear classifiers can only carve 
their input space into very simple regions, namely half-spaces sepa-
rated by a hyperplane19. But problems such as image and speech recog-
nition require the input–output function to be insensitive to irrelevant 
variations of the input, such as variations in position, orientation or 
illumination of an object, or variations in the pitch or accent of speech, 
while being very sensitive to particular minute variations (for example, 
the difference between a white wolf and a breed of wolf-like white 
dog called a Samoyed). At the pixel level, images of two Samoyeds in 
different poses and in different environments may be very different 
from each other, whereas two images of a Samoyed and a wolf in the 
same position and on similar backgrounds may be very similar to each 
other. A linear classifier, or any other ‘shallow’ classifier operating on 

Figure 1 | Multilayer neural networks and backpropagation. a, A multi-
layer neural network (shown by the connected dots) can distort the input 
space to make the classes of data (examples of which are on the red and 
blue lines) linearly separable. Note how a regular grid (shown on the left) 
in input space is also transformed (shown in the middle panel) by hidden 
units. This is an illustrative example with only two input units, two hidden 
units and one output unit, but the networks used for object recognition 
or natural language processing contain tens or hundreds of thousands of 
units. Reproduced with permission from C. Olah (http://colah.github.io/). 
b, The chain rule of derivatives tells us how two small effects (that of a small 
change of x on y, and that of y on z) are composed. A small change Δx in 
x gets transformed first into a small change Δy in y by getting multiplied 
by ∂y/∂x (that is, the definition of partial derivative). Similarly, the change 
Δy creates a change Δz in z. Substituting one equation into the other 
gives the chain rule of derivatives — how Δx gets turned into Δz through 
multiplication by the product of ∂y/∂x and ∂z/∂x. It also works when x, 
y and z are vectors (and the derivatives are Jacobian matrices). c, The 
equations used for computing the forward pass in a neural net with two 
hidden layers and one output layer, each constituting a module through 

which one can backpropagate gradients. At each layer, we first compute 
the total input z to each unit, which is a weighted sum of the outputs of 
the units in the layer below. Then a non-linear function f(.) is applied to 
z to get the output of the unit. For simplicity, we have omitted bias terms. 
The non-linear functions used in neural networks include the rectified 
linear unit (ReLU) f(z) = max(0,z), commonly used in recent years, as 
well as the more conventional sigmoids, such as the hyberbolic tangent, 
f(z) = (exp(z) − exp(−z))/(exp(z) + exp(−z)) and logistic function logistic, 
f(z) = 1/(1 + exp(−z)). d, The equations used for computing the backward 
pass. At each hidden layer we compute the error derivative with respect to 
the output of each unit, which is a weighted sum of the error derivatives 
with respect to the total inputs to the units in the layer above. We then 
convert the error derivative with respect to the output into the error 
derivative with respect to the input by multiplying it by the gradient of f(z). 
At the output layer, the error derivative with respect to the output of a unit 
is computed by differentiating the cost function. This gives yl − tl if the cost 
function for unit l is 0.5(yl − tl)2, where tl is the target value. Once the ∂E/∂zk 
is known, the error-derivative for the weight wjk on the connection from 
unit j in the layer below is just yj ∂E/∂zk.
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where the output error is low on average. 
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gradient descent (SGD). This consists of showing the input vector 
for a few examples, computing the outputs and the errors, computing 
the average gradient for those examples, and adjusting the weights 
accordingly. The process is repeated for many small sets of examples 
from the training set until the average of the objective function stops 
decreasing. It is called stochastic because each small set of examples 
gives a noisy estimate of the average gradient over all examples. This 
simple procedure usually finds a good set of weights surprisingly 
quickly when compared with far more elaborate optimization tech-
niques18. After training, the performance of the system is measured 
on a different set of examples called a test set. This serves to test the 
generalization ability of the machine — its ability to produce sensible 
answers on new inputs that it has never seen during training. 

Many of the current practical applications of machine learning use 
linear classifiers on top of hand-engineered features. A two-class linear 
classifier computes a weighted sum of the feature vector components. 
If the weighted sum is above a threshold, the input is classified as 
belonging to a particular category. 

Since the 1960s we have known that linear classifiers can only carve 
their input space into very simple regions, namely half-spaces sepa-
rated by a hyperplane19. But problems such as image and speech recog-
nition require the input–output function to be insensitive to irrelevant 
variations of the input, such as variations in position, orientation or 
illumination of an object, or variations in the pitch or accent of speech, 
while being very sensitive to particular minute variations (for example, 
the difference between a white wolf and a breed of wolf-like white 
dog called a Samoyed). At the pixel level, images of two Samoyeds in 
different poses and in different environments may be very different 
from each other, whereas two images of a Samoyed and a wolf in the 
same position and on similar backgrounds may be very similar to each 
other. A linear classifier, or any other ‘shallow’ classifier operating on 

Figure 1 | Multilayer neural networks and backpropagation. a, A multi-
layer neural network (shown by the connected dots) can distort the input 
space to make the classes of data (examples of which are on the red and 
blue lines) linearly separable. Note how a regular grid (shown on the left) 
in input space is also transformed (shown in the middle panel) by hidden 
units. This is an illustrative example with only two input units, two hidden 
units and one output unit, but the networks used for object recognition 
or natural language processing contain tens or hundreds of thousands of 
units. Reproduced with permission from C. Olah (http://colah.github.io/). 
b, The chain rule of derivatives tells us how two small effects (that of a small 
change of x on y, and that of y on z) are composed. A small change Δx in 
x gets transformed first into a small change Δy in y by getting multiplied 
by ∂y/∂x (that is, the definition of partial derivative). Similarly, the change 
Δy creates a change Δz in z. Substituting one equation into the other 
gives the chain rule of derivatives — how Δx gets turned into Δz through 
multiplication by the product of ∂y/∂x and ∂z/∂x. It also works when x, 
y and z are vectors (and the derivatives are Jacobian matrices). c, The 
equations used for computing the forward pass in a neural net with two 
hidden layers and one output layer, each constituting a module through 

which one can backpropagate gradients. At each layer, we first compute 
the total input z to each unit, which is a weighted sum of the outputs of 
the units in the layer below. Then a non-linear function f(.) is applied to 
z to get the output of the unit. For simplicity, we have omitted bias terms. 
The non-linear functions used in neural networks include the rectified 
linear unit (ReLU) f(z) = max(0,z), commonly used in recent years, as 
well as the more conventional sigmoids, such as the hyberbolic tangent, 
f(z) = (exp(z) − exp(−z))/(exp(z) + exp(−z)) and logistic function logistic, 
f(z) = 1/(1 + exp(−z)). d, The equations used for computing the backward 
pass. At each hidden layer we compute the error derivative with respect to 
the output of each unit, which is a weighted sum of the error derivatives 
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convert the error derivative with respect to the output into the error 
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At the output layer, the error derivative with respect to the output of a unit 
is computed by differentiating the cost function. This gives yl − tl if the cost 
function for unit l is 0.5(yl − tl)2, where tl is the target value. Once the ∂E/∂zk 
is known, the error-derivative for the weight wjk on the connection from 
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Figure 2.1: Illustrations of forward propagation (left) and backpropagation (right) by LeCun
et al. (2015), where nodes are neurons, edges are connections, w are weights, z are weighted
sums, f are activation functions, y are outputs, t is expected output and E is error/cost.

An Recurrent neural network (RNN) is a more powerful architecture. It reads in
an element at a time, together with its hidden states at the previous time step. It
can be visualised in Figure 2.2 as copies of the same neural network, passing down
states (history) through time. Hence an RNN handles sequential data better because
it remembers history (LeCun et al., 2015). Its output in matrix notation is shown in
Equation 2.2, where ht−1 is the hidden state at time step t−1 (history), W ’s are corre-
sponding weights and σ is the softmax function which turns numbers into probabilities
that sum to 1. An RNN model is trained using backpropagation through time (Mozer,
1995), where error derivatives are backpropagated through history.

that each contribute plausibility to a conclusion84,85. 
Instead of translating the meaning of a French sentence into an 

English sentence, one can learn to ‘translate’ the meaning of an image 
into an English sentence (Fig. 3). The encoder here is a deep Con-
vNet that converts the pixels into an activity vector in its last hidden 
layer. The decoder is an RNN similar to the ones used for machine 
translation and neural language modelling. There has been a surge of 
interest in such systems recently (see examples mentioned in ref. 86). 

RNNs, once unfolded in time (Fig. 5), can be seen as very deep 
feedforward networks in which all the layers share the same weights. 
Although their main purpose is to learn long-term dependencies, 
theoretical and empirical evidence shows that it is difficult to learn 
to store information for very long78.  

To correct for that, one idea is to augment the network with an 
explicit memory. The first proposal of this kind is the long short-term 
memory (LSTM) networks that use special hidden units, the natural 
behaviour of which is to remember inputs for a long time79. A special 
unit called the memory cell acts like an accumulator or a gated leaky 
neuron: it has a connection to itself at the next time step that has a 
weight of one, so it copies its own real-valued state and accumulates 
the external signal, but this self-connection is multiplicatively gated 
by another unit that learns to decide when to clear the content of the 
memory. 

LSTM networks have subsequently proved to be more effective 
than conventional RNNs, especially when they have several layers for 
each time step87, enabling an entire speech recognition system that 
goes all the way from acoustics to the sequence of characters in the 
transcription. LSTM networks or related forms of gated units are also 
currently used for the encoder and decoder networks that perform 
so well at machine translation17,72,76. 

Over the past year, several authors have made different proposals to 
augment RNNs with a memory module. Proposals include the Neural 
Turing Machine in which the network is augmented by a ‘tape-like’ 
memory that the RNN can choose to read from or write to88, and 
memory networks, in which a regular network is augmented by a 
kind of associative memory89. Memory networks have yielded excel-
lent performance on standard question-answering benchmarks. The 
memory is used to remember the story about which the network is 
later asked to answer questions. 

Beyond simple memorization, neural Turing machines and mem-
ory networks are being used for tasks that would normally require 
reasoning and symbol manipulation. Neural Turing machines can 
be taught ‘algorithms’. Among other things, they can learn to output 

a sorted list of symbols when their input consists of an unsorted 
sequence in which each symbol is accompanied by a real value that 
indicates its priority in the list88. Memory networks can be trained 
to keep track of the state of the world in a setting similar to a text 
adventure game and after reading a story, they can answer questions 
that require complex inference90. In one test example, the network is 
shown a 15-sentence version of the The Lord of the Rings and correctly 
answers questions such as “where is Frodo now?”89.  

The future of deep learning 
Unsupervised learning91–98 had a catalytic effect in reviving interest in 
deep learning, but has since been overshadowed by the successes of 
purely supervised learning. Although we have not focused on it in this 
Review, we expect unsupervised learning to become far more important 
in the longer term. Human and animal learning is largely unsupervised: 
we discover the structure of the world by observing it, not by being told 
the name of every object. 

Human vision is an active process that sequentially samples the optic 
array in an intelligent, task-specific way using a small, high-resolution 
fovea with a large, low-resolution surround. We expect much of the 
future progress in vision to come from systems that are trained end-to-
end and combine ConvNets with RNNs that use reinforcement learning 
to decide where to look. Systems combining deep learning and rein-
forcement learning are in their infancy, but they already outperform 
passive vision systems99 at classification tasks and produce impressive 
results in learning to play many different video games100. 

Natural language understanding is another area in which deep learn-
ing is poised to make a large impact over the next few years. We expect 
systems that use RNNs to understand sentences or whole documents 
will become much better when they learn strategies for selectively 
attending to one part at a time76,86. 

Ultimately, major progress in artificial intelligence will come about 
through systems that combine representation learning with complex 
reasoning. Although deep learning and simple reasoning have been 
used for speech and handwriting recognition for a long time, new 
paradigms are needed to replace rule-based manipulation of symbolic 
expressions by operations on large vectors101. ■
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Figure 5 | A recurrent neural network and the unfolding in time of the 
computation involved in its forward computation. The artificial neurons 
(for example, hidden units grouped under node s with values st at time t) get 
inputs from other neurons at previous time steps (this is represented with the 
black square, representing a delay of one time step, on the left). In this way, a 
recurrent neural network can map an input sequence with elements xt into an 
output sequence with elements ot, with each ot depending on all the previous 
xtʹ (for tʹ ≤ t). The same parameters (matrices U,V,W ) are used at each time 
step. Many other architectures are possible, including a variant in which the 
network can generate a sequence of outputs (for example, words), each of 
which is used as inputs for the next time step. The backpropagation algorithm 
(Fig. 1) can be directly applied to the computational graph of the unfolded 
network on the right, to compute the derivative of a total error (for example, 
the log-probability of generating the right sequence of outputs) with respect to 
all the states st and all the parameters.
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that each contribute plausibility to a conclusion84,85. 
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memory is used to remember the story about which the network is 
later asked to answer questions. 

Beyond simple memorization, neural Turing machines and mem-
ory networks are being used for tasks that would normally require 
reasoning and symbol manipulation. Neural Turing machines can 
be taught ‘algorithms’. Among other things, they can learn to output 

a sorted list of symbols when their input consists of an unsorted 
sequence in which each symbol is accompanied by a real value that 
indicates its priority in the list88. Memory networks can be trained 
to keep track of the state of the world in a setting similar to a text 
adventure game and after reading a story, they can answer questions 
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shown a 15-sentence version of the The Lord of the Rings and correctly 
answers questions such as “where is Frodo now?”89.  
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purely supervised learning. Although we have not focused on it in this 
Review, we expect unsupervised learning to become far more important 
in the longer term. Human and animal learning is largely unsupervised: 
we discover the structure of the world by observing it, not by being told 
the name of every object. 

Human vision is an active process that sequentially samples the optic 
array in an intelligent, task-specific way using a small, high-resolution 
fovea with a large, low-resolution surround. We expect much of the 
future progress in vision to come from systems that are trained end-to-
end and combine ConvNets with RNNs that use reinforcement learning 
to decide where to look. Systems combining deep learning and rein-
forcement learning are in their infancy, but they already outperform 
passive vision systems99 at classification tasks and produce impressive 
results in learning to play many different video games100. 

Natural language understanding is another area in which deep learn-
ing is poised to make a large impact over the next few years. We expect 
systems that use RNNs to understand sentences or whole documents 
will become much better when they learn strategies for selectively 
attending to one part at a time76,86. 

Ultimately, major progress in artificial intelligence will come about 
through systems that combine representation learning with complex 
reasoning. Although deep learning and simple reasoning have been 
used for speech and handwriting recognition for a long time, new 
paradigms are needed to replace rule-based manipulation of symbolic 
expressions by operations on large vectors101. ■
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Figure 5 | A recurrent neural network and the unfolding in time of the 
computation involved in its forward computation. The artificial neurons 
(for example, hidden units grouped under node s with values st at time t) get 
inputs from other neurons at previous time steps (this is represented with the 
black square, representing a delay of one time step, on the left). In this way, a 
recurrent neural network can map an input sequence with elements xt into an 
output sequence with elements ot, with each ot depending on all the previous 
xtʹ (for tʹ ≤ t). The same parameters (matrices U,V,W ) are used at each time 
step. Many other architectures are possible, including a variant in which the 
network can generate a sequence of outputs (for example, words), each of 
which is used as inputs for the next time step. The backpropagation algorithm 
(Fig. 1) can be directly applied to the computational graph of the unfolded 
network on the right, to compute the derivative of a total error (for example, 
the log-probability of generating the right sequence of outputs) with respect to 
all the states st and all the parameters.
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Figure 2.2: Illustrations of RNN (left) and unfolded RNN (right) by LeCun et al. (2015). xi, oi

and si are the input, output and hidden states at time i, and W is history from previous state.
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Chapter 2. Background

ht = f (Whht−1 +Wxxt +b)

yt = σ(Wsht)
(2.2)

Vanilla RNN can suffer from vanishing gradient problem, that error derivatives tend
to 0 after computation through many layers, so long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) or its variants (e.g. gated recurrent unit (Cho
et al., 2014a)) are commonly used to solve the problem. An LSTM cell, shown in
Figure 2.3, has three gates, namely input, forget and output gates. An input gate deter-
mines what information to keep, a forget gate determines what information to discard,
and an output gate determines what information to pass forward.

Figure 2.3: Illustration of an LSTM cell by Pawar (2017), where from left to right, the three
green nodes are input, forget and output gates.

For a natural language task, a neural network typically takes a word at a time as input.
As a result, input sentences are tokenised (split on space for English, for instance).
Then the resulted tokens are represented as vectors called word embeddings (Bengio
et al., 2003), usually in one-hot encoding. This is created by converting all tokens with
total vocabulary size N into binary vectors of size 1×N with only one position being
1 to indicate a particular token.

2.2 Language Modelling

Besides neural networks, language models play a significant role in our project too.
First, sentence weighting uses statistical language models to score training sentences
in order to distinguish their domains and assign them weights (Wang et al., 2017b).
Also, neural machine translation itself can be seen as a special type of neural language
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2.2. Language Modelling

model, that models the probability of a target translation given a source sentence. In
this section, we introduce both statistical and neural language models, as well as two
closely related measurements, entropy and perplexity.

2.2.1 N-gram Statistical Language Model

Nowadays n-gram language model is the most commonly used statistical language
model (Chen and Goodman, 1996). In the area of probability and NLP, n-gram is
defined as n consecutive items. An example of n-grams resulted from a sentence is
shown in Table 2.1.

sentence “how are you”
unigram “how”, “are”, “you”
bigram “how are”, “are you”
trigram “how are you”

Table 2.1: An example of n-grams from sentence “How are you”

An n-gram language model represents sequences of words (languages) using n-gram
probabilities. It makes use of Markov assumption, that a word only depends on the
n−1 words before it, to produce a simplified estimation of the language. For instance,
a unigram (1-gram) means that the words are independent of each other, and a trigram
(3-gram) means that a word depends on two previous words. Let wi denote the ith word
and wk

i denote the sequence of wi,wi+1, ...,wk−1,wk, the probability of a given sentence
S = w1,w2, ...,wn of length n can be calculated as Equation 2.3:

P(S) = P(w1)P(w2|w1)P(w3|w1,w2)...P(wn|w1,w2, ...wn−1)

=
n

∏
i=1

P(wi|wi−1
1 )

≈
n

∏
i=1

P(wi|wi−1
i−n+1)

(2.3)

N-gram probabilities are estimated from the language using Maximum Likelihood Es-
timation (MLE) (Jurafsky and Martin, 2000), which is a ratio of the observed frequency
of an n-gram to the observed frequency of its prefix. Hence the previous Equation 2.3
can be further developed as shown in Equation 2.4:
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P(S) = ...≈
n

∏
i=1

P(wi|wi−1
i−n+1)

≈
n

∏
i=1

PMLE(wi|wi−1
i−n+1)

=
n

∏
i=1

C(wi−1
i−n+1,wi)

C(wi−1
i−n+1)

(2.4)

One problem of using MLE on a corpus with a finite size is that it yields zero proba-
bility for unseen events. Thus, smoothing, which assigns a small probability to unseen
data, is applied in language models. Smoothing algorithms include additive smooth-
ing, Good-Turing estimate, interpolation, backoff, and Kneser-Ney smoothing, ranging
from simple to advanced algorithms (Chen and Goodman, 1996).

In practice, beginning-of-sentence symbols (BOS, denoted by “<BOS>” or “<s>”)
and end-of-sentence symbols (EOS, denoted by “<EOS>” or “</s>”) are added to
sentences to indicate the start and the end boundaries. Their probabilities are modelled
like normal words in both language models and NMT systems.

2.2.2 Neural Language Model

An RNN can also model natural language (sequences of words) (Bengio et al., 2003;
Mikolov et al., 2010). During training, an RNN takes each sequence without the last
word as input, and the corresponding expected output is the same sequence shifted one
time step to the left, thus without the first word. Hence a neural language model is
trained to calculate the probabilities of next possible words given all previous words.
An example of using RNN to model sentence “A Time Machine by H. G.” can be
visualised in Figure 2.4.

Figure 2.4: An example of neural language model by Zhang et al. (2019).
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2.3. Neural Machine Translation

2.2.3 Cross-entropy and Perplexity

Language models can model a corpus and estimate the probability of a given sentence
occurring in that corpus, besides which there are two more important metrics. The
first is cross-entropy, which measures uncertainty of a given piece of text occurring
in the corpus. A higher cross-entropy indicates a higher uncertainty, and vice versa.
Intuitively, a longer sentence will have a larger uncertainty. Therefore, in our project
we use per-word cross-entropy H (Brown et al., 1992), which is cross-entropy nor-
malised by sentence length. It is defined as Equation 2.5 for a sentence S with a large
length n.

H(S) =−
1

n
logP(S) (2.5)

Another metric perplexity shown in Equation 2.6 is defined based on cross-entropy.
It reflects how much the sentence is “expected” compared to what the language model
has observed in the corpus (Gamon et al., 2005). Per-word perplexity of a sentence
indicates the average number of choices (of words) at each word position, assuming a
uniform distribution (Jelinek et al., 1977). Both metrics provide good insight of how
close the sentence is to the corpus.

perplexity(S) = 2H(S) (2.6)

2.3 Neural Machine Translation

Currently, there are two prevailing neural machine translation architectures, namely
encoder-decoder (or sequence-to-sequence, seq2seq) with attention mechanism and
Transformer model based solely on attention. In this project, we base all of our exper-
iments on encoder-decoder with attention.

2.3.1 Encoder-decoder Model

An encoder-decoder model (Cho et al., 2014b) can be thought of as two RNN language
models connected together. The encoder takes an inputs and represents the source
sentence, and the decoder models the target sentence and outputs a translation. These
are visualised in Figure 2.5 where encoder is in green and decoder is in blue. Suppose
that X = {x1,x2, ...,xn} = xn

1 and Y = {y1,y2, ...,ym} = ym
1 are a pair of source and
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target sentences of lengths n and m respectively. An RNN encoder is trained to read
source sentence X into a representation vector c of fixed length as Equation 2.7:

ht = f (xt ,ht−1)

c = q({h1,h2, ...,hn})
(2.7)

where ht ∈ R is the hidden state at time step t, c is calculated from all hidden states
after the input is read, and f and q are non-linear functions. Take the case of Sutskever
et al. (2014), f is the LSTM described in Section 2.1 and q({h1,h2, ...,hn}) simply
returns hn.

The decoder is trained to translate X to Y , in other words, to recursively predict target
side word yt at time t, given the representation vector c of source and all previously
generated words {y1,y2, ...,yt−1}. It is the same as a neural language model on the
target side, except that it takes the source language into consideration too. The trans-
lation probability is modelled and calculated as Equation 2.8, where g is a non-linear
and likely multi-layered function. At time step t it calculates the probability of yt , with
st being the hidden state of the decoder.:

P(Y ) = P({y1,y2, ...,ym}) =
m

∏
t=1

P(yt |c,{y1,y2, ...,yt−1})

=
m

∏
t=1

g(yt−1,st ,c)
(2.8)

2.3.2 Attention Mechanism

The previous encoder-decoder model has a bottleneck, that the fixed length vector c is
poor at modelling long sentences (Sutskever et al., 2014), so the attention mechanism
came to rescue (Bahdanau et al., 2015; Luong et al., 2015). When translating a target
word, humans will take extra care of the specific source word(s) that are relevant to it.
The attention mechanism, which is added between encoder and decoder, produces an
analogous effect. An encoder-decoder model with attention is presented in Figure 2.5,
where the attention layer is denoted by the orange blocks.

The added attentional layer computes a score of each encoder hidden state for each
decoder hidden state, by reading from all encoder and decoder states. This score can
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2.3. Neural Machine Translation

Figure 2.5: Illustration of attention by Hieber and Domhan (2017).

be computed in many different ways shown in Equation 2.9:

score(ht ,hs) =



hT
t Wahs,where Wa is a weight matrix (Luong et al., 2015)

hT
t hs (Luong et al., 2015)

hT
t hs√

n
,where n is source states dimension (Vaswani et al., 2017)

vT
a tanh(Wa[ht ;hs]) (Bahdanau et al., 2015)

cos(ht ,hs) (Graves et al., 2014)

...

(2.9)

Next, for each target word, an attentional (context) vector is obtained as an average of
encoder hidden states, weighted by the softmax-ed attention scores. The calculations
are presented in Equation 2.10, where ct is the context vector, and αt,i is the alignment
score of target word and the ith source word, at time t. Through such weighting, the
connections between source and target words are not affected by their distances, so
source words that are more relevant can have a higher influence directly on the tar-
get word being produced. Finally, at each time step, the attentional context vector is
combined with decoder states to generate target words.
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αt,i = σ(score(ht ,hs))

ct =
n

∑
i=1

αt,ihi
(2.10)

The set of attention weights (αt,i) can be interpreted as how important the ith source
word is to the target word being generated at time step t. Hence, it provides an insight
of word alignment (although sometimes it can be totally off). An example of attention
weights of source and target word pairs is presented in Figure 2.6, and word alignment
from it can be visualised in Figure 2.7.

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Figure 2.6: Attention weights of source (English, x-axis) and target (French, y-axis) pairs by
Bahdanau et al. (2015). Each cell (i, j) indicates the score αi, j of ith target word and jth source
word pair, in 0 to 1 greyscale (brighter is higher).

The attention distribution is usually generated with content-based attention. The

attending RNN generates a query describing what it wants to focus on. Each item is

dot-producted with the query to produce a score, describing how well it matches the

query. The scores are fed into a softmax to create the attention distribution.

One use of attention between RNNs is translation . A traditional sequence-to-

sequence model has to boil the entire input down into a single vector and then

expands it back out. Attention avoids this by allowing the RNN processing the input

to pass along information about each word it sees, and then for the RNN generating

the output to focus on words as they become relevant.

The attending RNN generates a 
query describing what it wants 
to focus on.

Each item is dot producted with the 
query to produce a score, describing 
how well it matches the query. The 
scores are fed into a softmax to 
create the attention distribution.

[11]
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Figure 2.7: Word alignment derived from attention weights by Olah and Carter (2016)
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2.4 Parallel Corpora

Until now, one might wonder what data an NMT system learns from. The answer is
parallel corpus, which is defined as a collection of texts in two or more languages,
aligned at sentence level (Williams et al., 2016). Each sentence pair express the same
meaning in different languages. Words, per contra, are not necessarily aligned as lan-
guages can have different number or order of words to express the same meaning.

Besides, there is ongoing research on unsupervised NMT using only monolingual cor-
pora (Lample et al., 2017; Artetxe et al., 2018), but it has not achieved state-of-the-art
performance. Hence, for this project, we study the domain adaptation problem and
train our NMT systems on bilingual parallel corpora. We will refer to the language
that a system is trained on as source side, and the language a system translates to as
target side. Below is an example of an English-German sentence pair if English is
translated to German:

English source: Today is Tom’s birthday.
German target: Tom hat heute Geburtstag.

To train an NMT model, a corpus is usually split into three subsets, specifically train-
ing, validation (or development) and test. Training set is the data fed to the model
for learning, and it normally contains millions of sentences, taking up the majority of a
corpus. Validation set normally contains thousands of sentences, and it is used for tun-
ing hyperparameters or configurations like learning rate, dropout and early stopping.
Finally, test set contains thousands of sentences for evaluation purpose.

Often in valid and test sets, the provided target side sentences are called references
(also called gold standard or ground truth in other places), which are deemed as the
correct translations of corresponding source sentences. In contrast, the generated target
sentences from a model are called hypotheses, or simply (output) translations. Since
valid and test sets are used to evaluate a trained system, reference translations should
not be seen by the system.

There has been huge effort to gather parallel corpora from different sources, such as
United Nation documents, TED talks and European Medicine Agency (Tiedemann,
2012). However, parallel corpora are commonly constructed and released by large or-
ganisations or projects (Resnik and Smith, 2003), so the texts are commonly in the
domains of their specific interests. For instance, the latest United Nation corpus con-
tains parliamentary documents and records in its six official languages (Ziemski et al.,
2016). Consequently, words like “unite” and “nation” are frequent, which does not
happen in the English language in general (Rafalovitch and Dale, 2009).
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Chapter 2. Background

Thus, it is not possible to have a readily available corpus in every domain for translation
tasks. As a result, domain mismatch arises and leads to degraded results, when a
system performs translation on a different corpus than the one it has learned from.
This problem is magnified for low resource languages because there are only high-
quality corpora for limited language pairs, mainly those paired with English (Chu and
Wang, 2018). Before we further explain this problem and present current solutions, we
first describe how machine translation is evaluated in the next section.

2.5 Translation Evaluation

Since machine translation has emerged quickly from 1990, many machine translation
evaluation methods have been proposed, which fall into two categories, human evalu-
ation and automatic evaluation. For this project, we use bilingual evaluation under-
study (BLEU) (Papineni et al., 2002), an automatic metric, for evaluation because it
has a high correlation with human judgment. It is also quick and reproducible, so it
serves as a consistent measure for comparison. Particular to our project, BLEU has
been extensively used for measuring domain adaptation performance (Etchegoyhen
et al., 2018).

BLEU is made up of two components, brevity penalty and weighted n-gram preci-
sions. Brevity penalty penalises translations shorter than references and is calculated
as Equation 2.11. The weighted n-gram precisions as a whole measures n-gram overlap
between output and reference. Usually, n-gram precisions are calculated up to 4-grams
and weighted equally as Equation 2.12. Finally, BLEU is the product of brevity penalty
and weighted precisions in Equation 2.13:

brevity penalty = min(1,
output length

reference length
) (2.11)

weighted precisions = (
4

∏
i=1

i-gram precision)
1
4 (2.12)

BLEU = brevity penalty×weighted precisions (2.13)

Throughout the project, we use an automated script called sacreBLEU1 (Post, 2018)
as an implementation of BLEU. It incorporates standard machine translation tests, and
automates processing, tokenisation and scoring.

1https://github.com/mjpost/sacreBLEU
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2.6. Domain Mismatch

2.6 Domain Mismatch

Domain mismatch for machine learning refers to the situation where the distribu-
tions of training data and test data are different. For machine translation, Koehn and
Knowles (2017) define it as the situation where a model learns from corpus from a spe-
cific source and translates texts from another source, which has a different topic, style,
level of formality, etc. A root cause of domain mismatch is lack of data as mentioned in
Section 2.4, such that a system has to be trained on non-domain-specific data. Koehn
and Knowles (2017) identify this to be one of the six challenges that NMT currently
faces. The results of their experiments on training (rows) and translating (columns) in
different domains for both NMT and SMT, are presented in Figure 2.8. It is clear that
NMT’s performance (left green bars) drops more than SMT’s (right blue bars) when
domain changes.

System # Law Medical IT Koran Subtitles

All Data 30.5 32.8 45.1 42.2 35.3 44.7 17.9 17.9 26.4 20.8

Law 31.1 34.4 12.1 18.2 3.5 6.9 1.3 2.2 2.8 6.0

Medical 3.9 10.2 39.4 43.5 2.0 8.5 0.6 2.0 1.4 5.8

IT 1.9 3.7 6.5 5.3 42.1 39.8 1.8 1.6 3.9 4.7

Koran 0.4 1.8 0.0 2.1 0.0 2.3 15.9 18.8 1.0 5.5

Subtitles 7.0 9.9 9.3 17.8 9.2 13.6 9.0 8.4 25.9 22.1

Figure 1: Quality of systems (BLEU), when trained on one domain (rows) and tested on another domain
(columns). Comparably, NMT systems (left bars) show more degraded performance out of domain.

ical system leads to a BLEU score of 3.9 (NMT)
vs. 10.2 (SMT) on the Law test set.

Figure 2 displays an example. When translating
the sentence Schaue um dich herum. (reference:
Look around you.) from the Subtitles corpus,
we see mostly non-sensical and completely unre-
lated output from the NMT system. For instance,
the translation from the IT system is Switches to
paused.

Note that the output of the NMT system is often
quite fluent (e.g., Take heed of your own souls.)
but completely unrelated to the input, while the
SMT output betrays its difficulties with coping
with the out-of-domain input by leaving some
words untranslated (e.g., Schaue by dich around.).
This is of particular concern when MT is used for
information gisting — the user will be mislead by
hallucinated content in the NMT output.

3.2 Amount of Training Data

A well-known property of statistical systems is
that increasing amounts of training data lead to
better results. In SMT systems, we have previ-
ously observed that doubling the amount of train-
ing data gives a fixed increase in BLEU scores.
This holds true for both parallel and monolin-
gual data (Turchi et al., 2008; Irvine and Callison-
Burch, 2013).

Source Schaue um dich herum.
Ref. Look around you.
All NMT: Look around you.

SMT: Look around you.
Law NMT: Sughum gravecorn.

SMT: In order to implement dich Schaue .
Medical NMT: EMEA / MB / 049 / 01-EN-Final Work

progamme for 2002
SMT: Schaue by dich around .

IT NMT: Switches to paused.
SMT: To Schaue by itself . \t \t

Koran NMT: Take heed of your own souls.
SMT: And you see.

Subtitles NMT: Look around you.
SMT: Look around you .

Figure 2: Examples for the translation of a sen-
tence from the Subtitles corpus, when translated
with systems trained on different corpora. Per-
formance out-of-domain is dramatically worse for
NMT.

30

Figure 2.8: Quality of NMT and SMT systems (BLEU) when trained (rows) and tested
(columns) on different domains by Koehn and Knowles (2017). Green bars denote NMT and
blue bars denote SMT.

Another interesting phenomenon we observe from their result is that, for both NMT
and SMT, training on all available data sometimes significantly improves domain-
specific performance (e.g. Medical for NMT and IT for SMT), whereas it harms in
some other cases (e.g. Law). Thus, to blindly include or exclude extra available data
for domain specific tasks does not guarantee to enhance system performance. Hence
we are motivated to find sophisticated approaches that exploit underlying characteris-
tics of datasets and benefit domain adaptation in neural machine translation.
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Chapter 2. Background

In this report, we refer to the domain that a system is intended to translate in as in-
domain, and other domains as out-of-domain. Domain adaptation approaches are
used to mitigate the domain mismatch problem presented above. The approaches adapt
a system to a domain-specific task, leveraging limited in-domain data and relatively
more out-of-domain data. Some effective domain adaptation approaches for NMT will
be introduced in the next section.

2.7 Domain Adaptation Approaches

Domain adaptation for NMT only emerged recently, and some successful techniques
from both data and model perspectives have been well presented by Chu and Wang
(2018) in their survey. Most up-to-date approaches are outlined in the hierarchical dia-
gram in Figure 2.9. Overall, these can be divided into either data or model categories.
Whilst data perspective approaches make use of different data to achieve domain adap-
tation, model-centric approaches modify training objective (cost function), architecture
or decoding algorithm in a machine translation system.
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Figure 1: Overview of domain adaptation for NMT.

2016; Marie and Fujita, 2017). Model centric methods interpolate in-domain and out-of-domain models
in either a model level (Sennrich et al., 2013; Durrani et al., 2015; Imamura and Sumita, 2016) or an
instance level (Matsoukas et al., 2009; Foster et al., 2010; Shah et al., 2010; Rousseau et al., 2011; Zhou
et al., 2015). However, due to the different characteristics of SMT and NMT, many methods developed
for SMT cannot be applied to NMT directly.

Domain adaptation for NMT is rather new and has attracted plenty of attention in the research commu-
nity. In the past two years, NMT has become the most popular MT approach and many domain adaptation
techniques have been proposed and evaluated for NMT. These studies either borrow ideas from previous
SMT studies and apply these ideas for NMT, or develop unique methods for NMT. Despite the rapid
development in domain adaptation for NMT, there is no single compilation that summarizes and cate-
gorizes all approaches. As such a study will greatly benefit the community, we present in this paper
a survey of all prominent domain adaptation techniques for NMT. There are survey papers for NMT
(Neubig, 2017; Koehn, 2017); however, they focus on general NMT and more diverse topics. Domain
adaptation surveys have been done in the perspective of computer vision (Csurka, 2017) and machine
learning (Pan and Yang, 2010; Weiss et al., 2016). However, such survey has not been done for NMT.
To the best of our knowledge, this is the first comprehensive survey of domain adaptation for NMT.

In this paper, similar to SMT, we categorize domain adaptation for NMT into two main categories:
data centric and model centric. The data centric category focuses on the data being used rather than
specialized models for domain adaptation. The data used can be either in-domain monolingual corpora
(Zhang and Zong, 2016b; Cheng et al., 2016; Currey et al., 2017; Domhan and Hieber, 2017), synthetic
corpora (Sennrich et al., 2016b; Zhang and Zong, 2016b; Park et al., 2017), or parallel copora (Chu et al.,
2017; Sajjad et al., 2017; Britz et al., 2017; Wang et al., 2017a; van der Wees et al., 2017). On the other
hand, the model centric category focuses on NMT models that are specialized for domain adaptation,
which can be either the training objective (Luong and Manning, 2015; Sennrich et al., 2016b; Servan et
al., 2016; Freitag and Al-Onaizan, 2016; Wang et al., 2017b; Chen et al., 2017a; Varga, 2017; Dakwale
and Monz, 2017; Chu et al., 2017; Miceli Barone et al., 2017), the NMT architecture (Kobus et al., 2016;
Gülçehre et al., 2015; Britz et al., 2017) or the decoding algorithm (Gülçehre et al., 2015; Dakwale and
Monz, 2017; Khayrallah et al., 2017). An overview of these two categories is shown in Figure 1. Note
that as model centric methods also use either monolingual or parallel corpora, there are overlaps between
these two categories.

The remainder of this paper is structured as follows: We first give a brief introduction of NMT, and
describe the reason for the difficulty of low resource domains and languages in NMT (Section 2); Next,
we briefly review the historical domain adaptation techniques being developed for SMT (Section 3);
Under these background knowledge, we then present and compare the domain adaptation methods for

Figure 2.9: Outline of NMT domain adaptation techniques by Chu and Wang (2018).

In the following sections, we will introduce a few data-centric and training objective
(cost function) centric methods, from which our project is inspired and motivated.

2.7.1 Multi-domain System

Sennrich et al. (2016a) proposed to derive domain tags from target sentences, and to
add them to corresponding source sentences in a pilot study. As such, an NMT system
can learn to produce translations conditioned on given domain tags, so essentially the
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2.7. Domain Adaptation Approaches

system becomes a multi-domain system. In particular, their research was on controlling
the politeness level of English to German translation, where politeness level in English
is not as obvious as that in German because German uses honorifics.

Their proposed method can be described in three steps. First, the politeness level of
target sentences in training data is labelled automatically using a rule-based annotation
tool. Then the tags (labels) are concatenated to the end of source sentences, to inform
the model during training. Finally, at the test stage, the politeness level of target (refer-
ence) sentences is also identified and added to source sentences. As a result, the model
will tend to produce translations closer to the given politeness tags.

We can consider the domain tag (e.g. a politeness tag) as an extra word in each source
sentence. During training, the NMT system is able to learn the (high) probability
of producing an output of the same domain, conditioned on the input containing this
extra word. Moreover, with the presence of attention mechanism, this domain tag can
be attended by each target word directly during translation. Thus, when a test sentence
with a domain tag is fed to the NMT system, the system is more likely to produce
translations in that domain.

However, we argue that there is a potential limitation to their approach, which is a lack
of comprehensiveness. Their largest improvement was on “oracle experiments”, where
they labelled and added domains of reference translations to source sentences in a test
set. This is not a conventional evaluation way adopted by current machine translation
research community (Dorr et al., 2011), because their system accessed some degree of
reference information before producing its own translations. We suggest that an ideal
approach should be to translate a source sentence with different possible tags added
to it, and compare the translations with references of corresponding politeness levels.
However, it is almost impossible to obtain such a corpus. That being said, it remains
unknown whether their multi-domain system can still achieve equally good results, if
the source sentences are given different domains than the annotated one for reference.

Although multi-domain could be more useful or powerful than a system adapted to
a single domain, another drawback worth mentioning is model complexity and data
scarcity. To model multi-domain data, a system needs a deeper network with more
parameters, leading to more computational resources and time required. More im-
portantly, if the system looks at sub-corpus domains like politeness in Sennrich et al.
(2016a)’s work, sufficient training data will be needed for each domain. Paradoxically,
lack of data itself is an underlying reason for domain mismatch.
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Chapter 2. Background

2.7.2 Fine-tuning

Luong and Manning (2015) proposed to fine-tune NMT systems for domain adapta-
tion. It refers to adapting a general NMT system (already trained on a large amount
of out-of-domain data) to a specific domain by training on in-domain data of much
smaller size until the model converges. The model will gradually (over)fit to the in-
domain data, backed up by out-of-domain “knowledge”. Similar techniques have been
widely applied in other areas of machine learning, such as computer vision (Pan and
Yang, 2010) and speech processing (Yu et al., 2010).

The reason behind this is simple yet elegant. Training on a large amount of out-of-
domain data followed by fine tuning on small in-domain data can be interpreted as
learning a language in general followed by adapting to a certain writing style. Although
data come from different domains, they still have some features and characteristics in
common, such as grammar and vocabulary. Model parameters can learn to represent
the language(s) in general using a large amount of out-of-domain data. Then with fine-
tuning, the domain-specific data of small size can adjust parameters to capture specific
information such as named entities, choice of words, sentence length, etc. The core
idea is to save the best for last.

2.7.3 Mixed Fine-tuning

Inspired by, and based on multi-domain NMT and fine-tuning mentioned above, Chu
et al. (2017) proposed mixed fine-tuning. It first trains a system on out-of-domain sen-
tences with domain tags, similar to training a general multi-domain system. The next
step is to fine-tune the model until convergence, using a mix of out-of-domain and
over-sampled in-domain data, each with corresponding tags. According to their re-
search, mixed fine tuning outperforms systems using multi-domain tags or fine-tuning
separately.

In their experiments, a domain tag was simply added to a source sentence based on
which corpus the sentence was taken from. Therefore, a possible improvement is to
classify domain tags using a more sophisticated metric like cross-entropy (van der
Wees et al., 2017) or sentence embedding (Wang et al., 2017a), to distinguish pseudo-
in-domain data from an out-of-domain corpus. Nevertheless, deriving tags from source
sentences is more widely applicable comparing to deriving tags from target sentences,
because it no longer needs to look at references during evaluation phase.
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2.7.4 Sentence Weighting

Another recently proposed method that helps domain adaptation in NMT is sentence
weighting using a domain classifier (Chen et al., 2017), language model cross-entropy
(Wang et al., 2017b) and sentence embeddings (Zhang and Xiong, 2018).

The core idea of sentence weighting is that in-domain sentences should have higher
weights in the objective function than out-of-domain sentences, such that the model
will be penalised more by errors made on in-domain data than out-of-domain data.
As a result, the model weights can adjust to model in-domain data to a larger extent,
during backpropagation (through time). This leads to a better domain-adapted model.
An underlying assumption is that a lower cross entropy measured by language model
is useful in reflecting that a sentence is closer to a domain, and vice versa.

In this project, we focus on weighting using language models. It has an advantage
of extracting pseudo-in-domain sentences from out-of-domain corpus (Axelrod et al.,
2011). For example, the sentence “A reporter says the use of amoxicillin causes
cholestatic jaundice” can come from news data, but probably it will have a lower cross
entropy when calculated using language model trained on biomedicine domain. Thus
learning more from this sentence could benefit biomedical domain rather than news
domain.

First, a raw weight w is computed from adding differences of out-of-domain cross
entropy and in-domain cross entropy, for both source and target sides, shown as Equa-
tion 2.14. Then mini-max normalisation (Priddy and Keller, 2005) shown in Equa-
tion 2.15, is applied to move all raw weights into [0, 1] range to avoid negative values.
Let HS,D(u) denote the cross-entropy between sentence u from side S domain D, and
the language model trained on side S domain D, the weight λ for sentence pair < x,y >
is calculated as:

w = (Hsource,out(x)−Hsource,in(x))+(Htarget,out(y)−Htarget,out(y)) (2.14)

λ =
w−wmin

wmax−wmin
(2.15)

After a weight λi is computed for the ith sentence pair, it is incorporated into objective
function (cost) of the sentence pair as a coefficient:

weighted costi = λi×original costi (2.16)

28



Chapter 2. Background

Consequently, when the error derivatives are calculated from the cost, the weight influ-
ences the magnitude of backpropagation. Since the weights are normalised to between
0 and 1, the direction (polarity) of backpropagation remains unchanged. Under such a
sentence weighting scheme, the model parameters are updated with a greater magni-
tude for incorrect word produced in in-domain sentences. Hence the model parameters
can be adapted to in-domain data.

We reproduce this sentence weighting method and present the distribution of weights
computed in Figure 2.10. The x-axis represents the magnitude of a weight and the
y-axis represents the frequency of a magnitude seen in all weights.

Figure 2.10: Distribution of weights resulted from Wang et al. (2017b)’s sentence weighting
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3 | Improving Sentence Weighting

In this chapter, we intend to improve current sentence weighting approaches. First we
try to make Wang et al. (2017b)’s sentence weighting more aggressive by increasing
the gap between the distributions of in-domain and out-of-domain weights. In the
second half of this chapter, we propose a novel tag-and-weight approach that weights
sentences (Wang et al., 2017b) when building a multi-domain system (Sennrich et al.,
2016a).

3.1 Increasing Domain Weight Difference

Without weighting, training on in-domain or out-of-domain data is simply a trivial
case of assigning zero weights to unused data. Similarly, training on data from both
domains means to have equal weights for all sentences. In Figure 3.1 the equivalent
weightings of the three cases are visualised. Wang et al. (2017b)’s approach introduces
a difference between weights of out-of-domain and in-domain data, so that their system
can put more focus on in-domain sentences. As a comparison to the above three cases,
weight distribution resulted from their approach is shown in the left plot in Figure 3.2.

However, one thing remains unexplored is how large the difference should be. We
plan to enlarge the difference between in-domain and out-of-domain weights. We hy-
pothesise that with increased in-domain weights and reduced out-of-domain weights, a
model can not only better adapt to in-domain data, but also better distinguish pseudo-
in-domain data from out-of-domain data. This follows the same logic as sentence
weighting, but it is mathematically closer to training a model on in-domain data only.

From an initial attempt to compute Wang et al. (2017b)’s sentence weights, we find that
the distribution of weights appears to be two normal distributions. Hence we assume
the overall distribution of weights is a Gaussian mixture of two components. Then
we use expectation-maximization (EM), to fit and classify the weights. The classified
distribution with a smaller mean contains the out-of-domain weights and the that with
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a larger mean contains the in-domain weights. To enlarge the difference between the
two identified domains, we subtract 0.1 from each out-of-domain weight and add 0.1 to
each in-domain weight. We ensure that weights are in between 0 and 1 by thresholding.
Our proposed algorithm results in an increased difference between domain weights,
shown in Figure 3.2.

Figure 3.1: Illustration of equivalent weight distribution when a system is trained on in-domain
data (blue), out-of-domain data (green) and both.

Figure 3.2: Increasing the difference between weight distributions for out-of-domain (green)
and in-domain (blue) data.
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We implement the above algorithm using sklearn.mixture.GaussianMixture()

with EM algorithm, in scikit-learn1, a popular machine learning package in Python
(Pedregosa et al., 2011). First we create a GaussianMixture() object, with parameter
n components=2 to indicate that there are two Gaussian distributions in the mixture.
Next, all weights are fit into the model using GaussianMixture.fit method and pre-
dicted a label (distribution) each using GaussianMixture.predict method. Finally
0.1 is subtracted from weights in the out-of-domain distribution, and added to weights
in the in-domain distribution, with 0 and 1 as thresholds.

3.2 Tag-and-weight

In this section, we propose a novel domain adaptation technique inspired by both data
and model perspective approaches, called tag-and-weight. The new approach per-
forms sentence weighting (Wang et al., 2017b) on sentences with domain tags based
on cross-entropy difference.

We add a domain tag to each source sentence, in all training, validation and test sets.
The detailed procedure of our tagging algorithm is as follows:

1. train two language models (LMs) on in-domain and out-of-domain source sen-
tences in training data.

2. use two LMs to compute cross entropy values of each sentence in all data.

3. calculate a score for each sentence by subtracting cross entropy of in-domain
LM from that of out-of-domain LM.

4. mini-max normalise all scores into [0, 1] range.

5. convert scores to tags, that do not already exist in the vocabulary.

5.1. Either fit scores to a Gaussian mixture of two components, and parame-
terise using expectation-maximisation. Then, convert scores with smaller
mean to “<out>” and scores with larger mean to “<in>”.

5.2. Or convert scores to “<domain X >”, where X is the tenth digit of a score.
E.g. if a sentence is scored 0.6789, it will be tagged “<domain 6>”.

6. concatenate the tag at the beginning of its corresponding source sentence.

Steps 1-4 are similar to Wang et al. (2017b)’s sentence weighting introduced in Sec-
tion 2.7.4, except that we do not take target sentences into consideration. This is be-

1scikit-learn: https://scikit-learn.org/stable/
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cause we assume that source and target sentences are in the same domain if they are
in a pair. Using cross-entropy, we expect to identify pseudo-in-domain and pseudo-
out-of-domain data. Step 5.1 results in 2 different tags while 5.2 results in 10 different
tags (X ranging from 0 to 9, from most out-of-domain to most in-domain). The two
methods will create a 2-domain system and a 10-domain system respectively.

Our method can be more applicable than Sennrich et al. (2016a)’s. It derives tags from
source sentences without accessing target (reference) sentences. This is a more gen-
eralisable way of tagging. One potential limitation of our approach is that it requires
a huge data size if we choose to model various domains (e.g. in Step 5.2 we have 10
tags/domains). The more domains we have, the more data we need in order to represent
the sentences and domains well.

Below we feature comparison of a tagged sentence pair with an original sentence pair.
Only the source sentence is changed and the target sentence remains unchanged. This
applies to all training, validation and test data, after preprocessing which will be intro-
duced in a later chapter.

Source Target
original <s> A source sentence . </s> <s> A target sentence . </s>
tagged <s> <tag> A source sentence . </s> <s> A target sentence . </s>

Table 3.1: An example comparing tagged and original sentence pairs

Apart from tagging, we adopt the exact same sentence weighting scheme as Wang et al.
(2017b), describe in Section 2.7.4. Theoretically, a multi-domain system is able to deal
with different domains. However, if we already know that a multi-domain system only
needs to perform translation (evaluation) in a specific domain, we wish to adapt it to
that domain. Having sentence weighting is like the icing on the cake, where it helps to
adapt the model to the domain that it is more likely to see during the evaluation.

This system combines the use of domain tags and sentence weighting, but the two tech-
niques are from different perspectives. We argue that the two techniques can improve
domain adaptation performance orthogonally without affecting each other. To verify
our claim, we will compare this system with a multi-domain system and a system with
only sentence weighting in a later chapter.
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To the best of our knowledge, there is no published literature on word-level weighting
for neural machine translation domain adaptation purpose. In this chapter, we first state
the feasibility of word-level weighting and our motivation to carry out such work. Then
we propose three word weighting schemes based on word probability and language
model scores. Finally, we discuss the possibility of summing up word weights to form
a new sentence weighting method.

4.1 Motivation

Researchers have worked on tackling domain adaptation in NMT. We have introduced
some methods involving cost function such as fine-tuning and sentence weighting, as
well as proposed some improvement to sentence weighting. These sentence weighting
schemes covey the idea of treating data differently such that the model can put more
emphasis on in-domain data during training. In this chapter, we move one step further
to investigate on word-level weighting.

When proposing sentence level weighting, Wang et al. (2017b) also experimented on
how training solely on in-domain or out-of-domain data will affect performance. This
is actually a trivial case of sentence weighting, as we stated in the previous chapter.
Moreover, we argue that weighting sentences is a trivial case of weighting words. Un-
der sentence weighting, words in different sentences will receive different weights, but
words in the same sentence will have the weights. Weighting each word equally in a
sentence is equivalent to weighting a sentence with the same magnitude. This can be
easily verified in Equation 4.1 where wi denotes the weight for the ith sentence and
word loss denotes the loss calculated on word predictions against the reference:

total loss = ∑

sentence loss︷ ︸︸ ︷
wi×∑word loss︸ ︷︷ ︸
sentence weighting

= ∑

sentence loss︷ ︸︸ ︷
∑wi×word loss︸ ︷︷ ︸

word weighting

(4.1)
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Furthermore, NMT operates on word (or sub-word) level, where the whole system can
be regarded as a large language model on both source and target words. In addition,
during backpropagation, the objective function is computed as the sum of losses on
words. While our project is being carried out, Gong et al. (2019) proposed to adjust
weight and gradient for each token (word) in a sentence to regularise the bias caused
by maximum likelihood estimation.

These points justify the feasibility of modifying word gradient directly in a neural
network model to achieve desired effects. Hence we are motivated to propose word-
level weighting in NMT for domain adaptation, which weights each word in an output
sentence separately based on certain schemes. When the loss of a word is calculated, its
weight acts as a coefficient, which amplifies or shrinks the loss. Under such schemes,
words that are more important to in-domain data should be assigned larger weights,
leading to larger gradients. Moreover, if we break down weights to word level, we
might be able to identify pseudo-in-domain words or phrases (e.g. named entities)
more accurately.

4.2 Word Weighting

In this section, we design and propose completely new word weighting methods for
neural machine translation domain adaptation. The methods include using smoothed
word frequency (probability) ratio and distributing sentence weights.

4.2.1 Ratio of Word Probability

In Information Retrieval, an important metric to measure the importance of a word to a
document in a collection of documents is term frequency-inverse document frequency
(TF-IDF) (Salton and McGill, 1986). The TF-IDF score of a word term t to a document
d is calculated as Equation 4.2 where D denotes the whole collection.

tfidf(t,d,D) =
term frequency(t,d)

document frequency(t,D)
(4.2)

It has been widely used as a weighting factor in text mining and searches, while the
reason behind is simple. Term frequency indicates the importance of a word divided
by document frequency to offset it, because naturally some words appear more often
than other words in a language.
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We propose to use a ratio of word probabilities (frequencies), which resembles TF-
IDF, to measure the importance of a word to a domain. We change the TF-IDF ratio
to be that of in-domain word probability to out-of-domain word probability. The in-
domain probability reflects the importance of a word to the specific domain, which is
then normalised by the word’s out-of-domain probability.

Also, it is possible that a word does not occur in one of out-of-domain or in-domain
corpora (but not both). Counting results in zero probability in this case, so we use a lan-
guage model to compute word probabilities, where unseen words will get a smoothed
probability. The weighting method is presented in Equation 4.3, where “unk” refers to
an unseen word.

weight(wi) =



Pin(wi)

Pout(unk)
if wi is not in out-of-domain data

Pin(unk)

Pout(wi)
if wi is not in in-domain data

Pin(wi)

Pout(wi)
otherwise

(4.3)

This weighting scheme favours words that occur frequently in in-domain data and in-
frequently in out-of-domain data. The intention is to make objective function penalise
more for mistakes on producing in-domain words. As such, the model should have a
tendency to produce a vocabulary more similar to in-domain data.

4.2.2 Ratio of Logarithmic Word Probability

According to Zipf’s Law, which states that the frequency of a word is inversely propor-
tional to its rank, the probabilities of words in a corpus can vary largely, ranging from
10-7 to 10-3. This results in a problem of using the ratio of probability, that the com-
puted weights can be exponentially large or small. One improvement for our previous
method is to take logarithm (base 10 in our case) of probabilities to reduce the variance
of ratio. Since probabilities are always smaller than 1, taking logarithm results in neg-
ative values. Thus, we add a constant c to both numerator and denominator to bring
the smallest log probability to 1. The small constant c also acts as a regularisation term
to prevent the ratio from being too large or small. This leads to Equation 4.4:
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weight(wi) =
logPin(wi)+ c
logPout(w)+ c

,

where c = max
(

1− logPin(w),1− logPout(wi)
)
,

and we use base 10 in logarithm

(4.4)

Similar to the ratio of word probabilities, the ratio of log probabilities still favours
words occur frequently in in-domain data and infrequently in out-of-domain data, but
to a less extreme degree.

4.2.3 Distributing Sentence Weight

As we have discussed earlier, domain mismatch is not only about lexical difference or
word frequency, but also complicated language features like sentence length, writing
style, etc. From this point of view, both methods introduced in previous sections have
some drawbacks.

An obvious one is that the approaches consider target words when computing weight,
but source language is not utilised. Moreover, a word weight is calculated from the
(smoothed) frequencies of that single word, so word context is not considered. The
same word always receives the same weight regardless of which sentence it is in.
However, in a natural language, there are long-range dependencies like subject-verb
agreement and idioms, and even worse, discourse relationships between sentences.

To address the above two limitations, we can make use of sentence weights in Wang
et al. (2017b)’s sentence weighting. The sentence weighting treats source and tar-
get sentence equally and considers word context using language model cross entropy.
Building from this work, we design another word weighting scheme which distributes
the sentence weights to each word in the target sentence, such that the average of
word weights in a sentence is equal to the sentence weight. The idea is demonstrated
in Equation 4.5, where weights denotes sentence weight and weighti denotes the word
weight for the ith word in the sentence. The resulted total loss (cost) from word weight-
ing will be different from that from the original sentence weighting scheme, and we
expect this to be more sophisticated than the loss from sentence weighting.
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sentence weighting: total loss sent = ∑weights×∑word loss

⇓
word weighting: total loss word = ∑∑weighti×word loss

where weights =
1

n

n

∑
i

weighti

(4.5)

Until now, we have an idea of distributing sentence weights, so we need a way to dis-
tribute a sentence weight to words. In general, we decide to assign a score to each word,
and the word weight should be proportional to that score, multiplied (normalised) by
the length of the whole sentence. For a sentence of length n made up with words
x1, ...,xi, ...,xn, the weight of word xi is calculated as Equation 4.6, where score() de-
notes a function to score a word (explained later), ws denotes sentence weight and w xi

denotes the weight of word xi.

w xi =
n×ws× score(xi)

score(x1)+ ...+ score(xi)+ ...+ score(xn)

which satisfies ws =
1

n

n

∑
i

w xi

(4.6)

Multiplying each word weight with sentence length n is necessary because it sets off
the influence of sentence length on word weight. Without this coefficient, a sentence
weight for a long sentence is dilated too much, while a word in shorter sentences will
receive too much weight.

A good score() function should be designed so that a score is large if the word is more
likely to occur in in-domain data and less likely to occur in out-of-domain data. We use
language models to calculate word probabilities for in-domain and out-of-domain data.
We compute probabilities for all words in a sentence in one go so that word context is
considered1. Then we use logarithmic probability ratio shown in Equation 4.7 as our
score() function:

score(wi) =
logPin(wi)

logPout(wi)
(4.7)

1Corresponds to full scores() method in KenLM’s Python module: https://github.com/

kpu/kenlm/blob/master/python/kenlm.pyx
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4.3. Summing Word Weights

The use of ratio of logarithmic word probability is similar to our previous scheme.
However, this scheme distributes sentence weights based on the ratio, whereas the
previous scheme can be considered as distributing a constant 1 to each word. This
scheme assigns different weights in different context for the same word.

4.3 Summing Word Weights

Apart from the sentence weighting introduced in earlier chapters, we can also obtain
sentence weights by summing up word weights in a sentence, normalised by sentence
length. The idea behind is that a sentence should be weighted more if it contains more
important in-domain words. While word-level weighting may be too aggressive to
incorporate word context features, summing up word weights alleviates such problem.
We will experiment on the three word weighting schemes first, and further experiment
on summing weights if a word weighting achieves promising results.
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5 | Experiments

In this chapter, we design and perform two experiments to evaluate our proposed sen-
tence and word weighting schemes. We first present our datasets and experiment de-
sign. Then we describe steps for preprocessing datasets and training language models.
Finally, we will report the results of our experiments on both datasets and identify the
approaches that result in improvement.

5.1 Data and Domains

To evaluate our proposed approaches, we prepare two tasks of varying degree of do-
main specificity and proportion of in-domain data:

1. adapting news to a biomedical domain for Romanian to English translation.

2. adapting news to TED talks for English to German translation.

In this section, we describe our data sources and partition for each task. All the data
we use can be found and directly downloaded from the open parallel corpus1 (OPUS)
(Tiedemann, 2012). To better understand the domain mismatch problem in each task,
besides data size, we report two extra linguistic features, namely average sentence
length and logarithmic type-token ratio.

Average sentence length is computed as the number of words divided by the number
of sentences as Equation 5.1. It reflects text structure and readability (Stymne et al.,
2013), and has been shown to vary across different domains (Kwon et al., 2009), writ-
ing styles and topics (Koeva et al., 2012).

average sentence length =
count(words)

count(sentences)
(5.1)

1OPUS: http://opus.nlpl.eu/index.php
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Type-token ratio is computed as the number of unique words (size of vocabulary)
divided by the number of total words as Equation 5.2. It indicates the variety of lexical
choice (François and Fairon, 2012; Bentivogli et al., 2016), as well as density of subject
matters or thoughts (Stymne et al., 2013).

type-token ratio =
count(unique words)

count(all words)
(5.2)

Notwithstanding, the type-token ratio is dramatically affected by corpus size (Ket-
tunen, 2014). From Zipf’s law, we can deduce successively that the number of new
words increases less than proportionately to an increase in number of total words.
Therefore we report logarithmic type-token ratio instead, which is reasonably invari-
ant to corpus size (Weitzman, 1971). It is computed as Equation 5.3, and we use a
logarithm of base 10.

logarithmic type-token ratio =
log
(
count(unique words)

)
log
(
count(all words)

) (5.3)

The number of sentences, number of words and number of unique words required to
compute the above two measurements, can be obtained by executing the following
three commands.

$ wc -l input_file # count sentences

$ wc -w input_file # count words

$ awk -v RS=" " ’{a[$0]++} END{for(k in a) sum++; \

> print sum}’ input_file # count unique words

5.1.1 Romanian-English News-Biomedicine

For Romanian to English translation (RO-EN), we adapt news data to a biomedical
domain. The news data mainly comes from news translation task in Workshop on
Machine Translation (WMT) 20162. It is made up with proceedings of the European
Parliament (Europarl) (Koehn, 2005), Southeast European Times (SETimes) and back-
translated monolingual data from News Crawl3 (Sennrich et al., 2016c). We refer to it
as “WMT news” from now on. Our biomedical data is a corpus made out of documents
from the European Medicines Agency (EMEA) and we refer to it as “EMEA”.

2WMT16: http://www.statmt.org/wmt16/translation-task.html
3Back-translations from monolingual News Crawl data: http://data.statmt.org/rsennrich/

wmt16_backtranslations
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Chapter 5. Experiments

The WMT news corpus contains 2.4 million sentence pairs as our out-of-domain train-
ing data. Regarding in-domain data, EMEA corpus contains nearly 1 million sentence
pairs. We randomly draw 2,000 sentence pairs to our validation set, and the same ap-
plies to our test set. The rest 990,499 sentence pairs form in-domain training data.
Both in-domain and out-of-domain training data are combined to form training data
of 3.4 million sentences and shuffled (by the system) during training. We present the
statistics of our RO-EN data in Table 5.1.

number of
sentence

average length log type-token ratio
source target source target

Train
Combined 3,389,297 19.33 17.72 0.827 0.822

WMT news 2,398,798 22.34 20.36 0.831 0.826
EMEA 990,499 12.06 11.33 0.775 0.771

Valid EMEA 2,000 12.21 11.53 0.885 0.877
Test EMEA 2,000 12.51 11.77 0.886 0.877

Table 5.1: Data for Romanian-English translation

In-domain EMEA data makes up 29.2% of the training data and out-of-domain WMT
news makes up the rest 70.8%. Regardless of language, WMT news has an extremely
long, nearly doubled sentence length comparing to EMEA, and a higher lexical di-
versity. Interestingly, EMEA valid and test sets have the highest lexical diversity.
Language-wise, Romanian (source) sentences are normally 1-2 words longer, and have
a slightly higher lexical diversity than English (target) sentences. In general, although
one-third of the training data are in-domain, but the domain difference between WMT
news and EMEA is significant.

5.1.2 English-German News-TED Talks

For English to German translation (EN-DE), we stick to WMT news as out-of-domain
data. It is made up of Europarl, Common Crawl and News Commentary, and contain
4.7 million sentence pairs. Our in-domain data is TED talks from speech translation
task in the International Workshop on Spoken Language Translation (IWSLT) each
year4. We refer to it as “IWSLT”. The same data combination was used in Luong and
Manning (2015)’s fine tuning and Wang et al. (2017b)’s sentence weighting experi-
ments.

we argue that the training data for EN-DE is of higher quality than that for RO-EN, be-
cause of two facts. First is that its out-of-domain data does not contain back-translated

4IWSLT17: http://workshop2017.iwslt.org/59.php
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monolingual texts, and second is that the in-domain data has been used for an estab-
lished speech translation task for many years.

Since the datasets are used by mainstream translation tasks, training, validation and test
sets are readily available. We mix WMT news training data and IWSLT training data
to form our overall training data. We then use IWSLT 2012’s test set as our validation
set, and IWSLT 2013 and 2014’s test sets as our two test sets, named Test1 and Test2.
This train/valid/test partition follows Wang et al. (2017b)’s work. Similarly, we present
EN-DE data statistics in Table 5.2.

number of
sentence

average length log type-token ratio
source target source target

Train
Combined 4,714,797 22.70 21.06 0.817 0.837

WMT news 4,520,620 22.93 21.27 0.817 0.837
IWSLT 194,177 17.28 16.09 0.816 0.843

Valid IWSLT12 test 1700 15.58 14.64 0.851 0.877
Test1 IWSLT13 test 993 17.94 16.80 0.859 0.881
Test2 IWSLT14 test 1305 16.24 15.38 0.863 0.883

Table 5.2: Data for English to German translation

For this task, in-domain data only makes up 4.1% of total training data, in clear contrast
to the previous Romanian-English task. We observe that in-domain WMT news sen-
tences are on average 5.5 words shorter than out-of-domain IWSLT sentences, for both
languages. Regarding logarithmic type-token ratio, vocabularies of WMT news and
IWSLT have similar complexity for both languages. Language-wise, English (source)
sentences are slightly longer, but its vocabulary diversity is always lower than German
(target) sentences, regardless of domain or partition. Overall the task is difficult due to
its low resource in-domain data.

5.2 Experiment Settings

In this chapter, we design and describe our experiments on the proposed sentence and
word weighting schemes. Since we aim for improved adaptation with our methods, we
choose Wang et al. (2017b)’s sentence weighting to be our baseline. Also, to verify
their claim, we train a vanilla system without any domain adaptation technique. In
order for resulted systems to be comparable, we keep all configurations unchanged,
except for weighting method and/or weights.
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We experiment on all proposed approaches together with baseline and vanilla systems
using Romanian to English (RO-EN) task, except tag-and-weight. This is because tag-
and-weight approach needs a fairly large amount of data in order to represent multiple
domains whereas RO-EN has a relatively small data size.

For English to German (EN-DE) task, we first run vanilla and baseline experiments.
Then we will evaluate our novel tag-and-weight approach, with different configura-
tions of tag amount and weighting. Finally, we identify all the techniques that achieve
promising results in RO-EN task and experiment them on EN-DE task.

RO-EN data is small in scale comparing to EN-DE, which allows for quick experimen-
tation given that machine translation experiments take long time5 and computational
resources are expensive and limited.

Table 5.3 and Table 5.4 summarise our planned experiments for RO-EN and EN-DE
tasks respectively. The word “vanilla” refers to a system without any domain adapta-
tion technique, i.e. a standard NMT system.

Weighting Approach
none vanilla

sentence
baseline
increasing domain difference

word
word frequency ratio
log word frequency ratio
distributing sentence weight

summing word weighting that beats baseline

Table 5.3: Experiment planned for RO-EN

Weighting Approach Description
none vanilla

sentence

baseline sentence weighting
tag-and-weight 2 tags
tag-and-weight 2 tags + sentence weighting
tag-and-weight 10 tags
tag-and-weight 10 tags + sentence weighting

and all systems that beat baseline in RO-EN

Table 5.4: Experiment planned for EN-DE

5Training one system on 1 NVIDIA GTX 1080 GPU takes 1-2 days using our configurations.
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We choose to run experiments with Marian6 (Junczys-Dowmunt et al., 2018), which is
an efficient neural machine translation framework written purely in C++. It implements
state-of-the-art architectures and techniques. One feature that is crucial to the success
of our project is that it supports cost weighting at sentence-level or word-level.

Since the goal of our project is to explore sentence and word weighting schemes, we
do not perform hyperparameter tuning. We use the same model configurations as Mar-
ian’s reproduction of the University of Edinburgh’s submission to WMT2016 news
translation task for RO-EN (Sennrich et al., 2016b). One exception is early stopping,
which is changed to happen once there is no improvement in five consecutive valida-
tion BLEU scores. The reason is that in a pilot experiment we find that it is hard for
cross-entropy to stall under sentence weighting.

The model configurations can be found in the run-me.sh script in Marian’s example of
Edinburgh’s WMT16 RO-EN7. We outline the important configurations in Table 5.5.

Paramter Value
encoder type bidirectional RNN
encoder layer 1
decoder type unidirectional RNN
decoder layer 1
cell type GRU
embedding size 512
hidden unit size 1024
layer normalisation True
RNN dropout 0.2
source word dropout 0.1
target word dropout 0.1
mini-batch size dynamic
optimiser Adam
learning rate 0.0001
validation criteria translation, cross entropy
early stopping 5
beam size 12

Table 5.5: Important configuration for experiments

6Marian: https://marian-nmt.github.io/
7Marian’s reproduction of Edinburgh’s WMT16 RO-EN: https://github.com/marian-nmt/

marian-examples/tree/master/training-basics
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5.3 Preprocessing

Before data are fed to a system for training, they are preprocessed for better perfor-
mance. Preprocessing is done in mainstream NMT frameworks like OpenNMT, Mar-
ian and Nematus. In this section, we introduce our preprocessing steps for RO-EN
and En-DE. Following preprocessing, we describe how statistical language models are
trained for calculating cross entropy and probabilities used in weighting.

5.3.1 Preprocessing Corpora

First, all punctuation marks are normalised. Then, particularly for Romanian, we nor-
malise Romanian letters and remove diacritics.

Following character normalisation, sentences in all datasets are tokenised, so words
and punctuation marks are split by space. Next, empty and long sentences over 80
tokens are cleaned from the training corpus. Then a truecaser is trained on training
data to inform the model of which words (characters) should be capitalised (e.g. first
letter for named entities). Afterwards, it is applied to all data to convert words to
lowercase.

We then segment all words to subwords. After word segmentation, the system can deal
better with rare words as well as keep a reasonable vocabulary size (imagine an extreme
case, where English words are segmented to characters. This results in only 26 letter
plus symbols). The widely used technique now is the unsupervised segmentation based
on byte pair encoding (BPE) by Sennrich et al. (2016d). We set the final vocabulary
size to be 85,000.

Word segmentation is important to our project. All of our approaches are only applied
after words are segmented. This is simply because vocabulary changes after the words
are segmented, and costs are calculated at the subword level.

The whole preprocessing procedure, same as model configurations, follows Edin-
burgh’s WMT2016 news task submission. For German and English, we do not ap-
ply Romanian-specific steps. The code for preprocessing can be found in the self-
contained script/ folder8 in Marian’s example of Edinburgh’s WMT16 RO-EN.

8Preprocessing scripts folder: https://github.com/marian-nmt/marian-examples/tree/

master/training-basics/scripts
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5.3.2 Training Language Models

Statistical language models are needed throughout our project to compute cross en-
tropy and word probabilities. We pick KenLM9 (Heafield et al., 2013) due to its ease
of use. It incorporates modified Kneser-Ney smoothing and provides fast querying
with low memory cost. KenLM also allows users to easily specify the order n for
n-grams in the command line when building a language model. It also has a Python in-
terface for querying, which can be integrated with Python scripts for sentence or word
weighting methods easily.

Compilation of KenLM is done using cmake, by following the command listed in
README.md file in its GitHub repository9. After that, a language model can be built
with the command listed below. Parameter -S is the amount of memory to be allo-
cated, -o is the desired order of language model, corpus is the input text file and
output.arpa is the output language model file.

$ build/bin/lmplz -S 1G -o 1 <corpus >output.arpa

For our first two word weighting schemes, namely the ratio of probabilities and the ra-
tio of logarithmic probabilities, we need a smoothed probability for every single word,
including unseen words. We obtain this from a unigram language model trained on
the corpus. The language model tool generates a file in ARPA format containing word
and logarithmic probability pairs, for which we write a script to parse the logarithmic
probabilities of each word easily.

To compute cross entropy, we need to pick a more sophisticated order n for our n-
gram language model to represent our data well. This is because we need to consider
longer word context, rather than single word frequencies. Choosing small or large n is
a trade-off between bias and variance. The reason is that small n leads to underfitting
(high bias) while large n leads to overfitting (high variance). Besides, using a larger n
means that more memory and storage is needed for generating language model files.
The order of language model is not explicitly stated in Wang et al. (2017b)’s research
on NMT, but Axelrod et al. (2011) used 4-gram for their experiment on SMT and
achieved improvement for domain adaptation. Moreover, the popular BLEU metric
usually measures up to 4-gram accuracy for evaluation of fluency and accuracy. Thus
we choose to use 4-gram in our project too. We use KenLM’s Python module for
loading language model file and querying for probabilties and cross-entropy values.

9KenLM: https://github.com/kpu/kenlm

48

https://github.com/kpu/kenlm


Chapter 5. Experiments

5.4 Experiment Results

5.4.1 Romanian-English News-Biomedicine

In this section, we report our experiment results on adapting Romanian-English news
to biomedicine. All models are trained using the same configurations except the
weighting scheme. Hence the results are comparable. After we notice that using
logarithmic word frequency ratio as word weighting (No. 3) has achieved promis-
ing improvement, we summed the weights to create a new sentence weighting (No.
7).

We report the BLEU scores on both valid and test sets in Table 5.6. Since we do not
perform hyperparameter tuning using the valid set, valid BLEU scores are indicative.
However, we only compare performance and make conclusions based on test perfor-
mance. Vanilla refers to the system without any domain adaptation technique. The
baseline is in italic and the systems that beat the baseline are in bold.

Weighting System No. System Valid Test
none 1 vanilla 22.82 21.85

word
2 word frequency ratio 22.23 21.61
3 log word frequency ratio 24.11 22.70
4 distributing sentence 23.17 21.90

sentence
5 baseline (Wang et al., 2017b) 22.62 22.13
6 increasing domain difference 22.65 22.11
7 summing log word frequency ratios 23.76 22.97

Table 5.6: Model performance on adapting Romanian-English news to biomedicine

From the results, we can see that sentence weighting (No. 5) does outperform original
model without weighting (No. 1), by 0.28 BLEU, but creating a larger difference
between in-domain and out-of-domain weights (No. 6) does not improve performance.
Hence we stick to the original sentence weights when distributing them over words.

Simply weighting words based on frequency ratio (No. 2) leads to an inferior result,
comparing to both vanilla model without weighting (No. 1) and baseline (No. 5). This
is expected because the ratio can be exponentially large.

We find that weighting words using the ratio of logarithmic frequency (No. 3) improves
0.57 BLEU comparing to baseline (No. 5). This could justify our choice of using a
logarithmic scale on word frequency ratio.
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When we sum up the word weights from the ratio of logarithmic frequency, normalised
by sentence length, to obtain sentence weights (No. 7), we have the largest improve-
ment of 0.84 BLEU over baseline (No. 5), and 1.12 BLEU over the vanilla system
(No. 1). This improvement is three times larger than the 0.28 BLEU improvement of
using baseline sentence weighting over the vanilla system.

We have identified two weighting schemes (No. 3 and 7) that achieve better BLEU
over baseline sentence weighting, so we will carry on to evaluate the two schemes on
English to German task in the next section.

5.4.2 English-German News-TED Talks

In this section, we report our experiment results on EN-DE experiments. It includes
a vanilla system, a baseline sentence weighting, our proposed tag-and-weight with
different configurations as well as the two best schemes from the previous section.

Weighting System No. System Valid Test1 Test2
none 1 vanilla 27.57 29.83 26.50
word 2 log word frequency ratio 27.76 29.88 26.37

sentence
3 baseline (Wang et al., 2017b) 27.76 29.88 26.19
4 summing log freq ratios 27.88 30.04 26.36

5 2 tags 26.63 29.78 25.76

tag-
and-

weight

6 2 tags + sentence weighting 27.78 30.50 26.88
7 10 tags 19.41 25.45 20.56
8 10 tags + sentence weighting 20.08 24.84 20.66

Table 5.7: Model performance on adapting English-German news to TED talks

From the results, we notice that our baseline (No. 3), sentence weighting based on
cross-entropy difference, only results in a slight improvement over the vanilla system
(No. 1) on Test1, and even degraded performance on Test2.

Whilst word weighting with logarithmic word frequency ratio (No. 2) does not lead
to significant improvement over baseline, our new sentence weighting of summing
up such ratio (No. 4) still achieves improvement over baseline, but with a smaller
magnitude of around 0.2 BLEU for on Test1 and Test2. This could be explained by
our reasoning in previous chapter that summing up word weights can reduce word
weighting’s aggressiveness. Interestingly, the vanilla system still performs better than
this new sentence weighting on Test2.
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Chapter 5. Experiments

Regarding our tag-and-weight method, we observe that systems with 10 tags (No.
7 and 8) produce an inferior performance on both test sets, regardless of applying
weighting or not. This is probably caused by using insufficient data to model too many
domains. On the other hand, whilst 2 tags (No. 5) does not improve translation perfor-
mance, 2 tags with sentence weighting (No. 6) reaches the best BLEU score among all
systems for both tasks. It is on average 0.6 BLEU better than baseline system, and 0.5
BLEU better than the best sentence weighting we proposed (No. 4). It is also the only
approach that beat the vanilla system on both test sets.

Also, using 2 tags with sentence weighting beat simply using 2 tags and baseline sen-
tence weighting. Thus, we are able to conclude that our proposed tag-and-weight
approach achieves a better domain adaptation over the two state-of-the-art techniques,
namely multi-domain NMT and sentence weighting. In the next chapter, we will try to
analyse where the improvement in BLEU comes from.
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6 | Analysis and Discussion

From Section 5.4, we find that for English to German translation, systems seem to
produce inconsistent performances on Test1 and Test2. Hence in the first half of this
chapter, we look into the test data and try to find out the reason behind.

Also, three of our proposed techniques generally produce better BLEU score than our
baseline, Wang et al. (2017b)’s sentence weighting based on cross-entropy difference.
The three techniques are word weighting using logarithmic word frequency ratio, sen-
tence weighting by summing up logarithmic word frequency ratio, and tag-and-weight
using 2 tags and sentence weighting. We will analyse the translation outputs to look
for the source of improvement in the second half of this chapter.

6.1 Comparing English-German Test Data

We have two test sets for English to German translation, Test1 from IWSLT 2013 test
data and Test2 from IWSLT 2014 test data. We observe that systems have inconsistent
performances on the two test sets. The vanilla system without any domain adaptation
technique has very strong performance on Test2 but not Test1, as shown in Section 5.4.
We hypothesise that Test2 is not of a good in-domain quality comparing to Test1.

It is easy to test our hypothesis. In our tag-and-weight approach, we have assigned a tag
to each source sentence in all data including test sets, using cross-entropy difference of
in-domain and out-of-domain language models. In specific, we simply need to examine
the data used for the approach with 2 tags. Then we can compare the percentage of
sentences tagged as out-of-domain and in-domain in each test set. This will indicate
the in-domain quality of each dataset. We write a script to read test sets, and report the
number and percentage of tags for each domain in Table 6.1.

As seen from the table, only 8.8% of the sentences in Test1 are tagged as out-of-
domain, while half of Test2 are tagged as to out-of-domain. This clearly implies that
Test2 is not good enough with regard to being in-domain. Our hypothesis holds true.
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6.2. Comparing Machine Translations with Reference

Test1 Test2
Number (%) of in-domain tags 906 (91.2%) 652 (50.0%)
Number (%) of out-of-domain tags 87 (8.8% ) 653 (50.0%)
Number of all tags 993 1305

Table 6.1: Number of in-domain and out-of-domain tags in two test sets for 2-tag tag-and-
weight experiment on EN-DE. We used language models trained on training data for tagging.

It is thus sensible to see that the vanilla system results in better performance than
many domain-adapted systems on Test2. Such a vanilla system is inclined to out-of-
domain data due to its overwhelming proportion (95.9%) in training data, as presented
in Section 5.1.2. We also conclude that it is also not a good choice to use Test2 to
measure domain adaptation effort because it contains an equal amount of in-domain
and out-of-domain data.

A notable observation is that our tag-and-weight system, using 2 tags and sentence
weighting, reaches the best BLEU for both Test1 and Test2. Despite being domain
adapted, its performance on Test2, which is regarded as mixed-domain, is still better
than vanilla. This implies that our system has the capability of differentiating domains,
rather than simply being adapted to one domain only. Since simply using 2 tags did not
achieve such a good outcome, we regard our attempt to combine multi-domain NMT
and sentence weighting as a remarkable success.

6.2 Comparing Machine Translations with Reference

In Section 5.4, some of our proposed approaches have resulted in higher BLEU than
baseline. We are curious to know what characteristics or measurements of the transla-
tions have improved.

6.2.1 Recall of Named Entities

Translation of named entities is hard but important for domain adaptation, for the rea-
son that named entities are representative of a domain, but the words are infrequent
(Li et al., 2018). NMT is poor at dealing with less common words because maximum
likelihood estimation puts more than proportionate prediction probabilities on com-
mon words (Gong et al., 2019). We hypothesise that through weighting in-domain
words/sentences more, the rare named entities can get a higher chance to be recalled.
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Chapter 6. Analysis and Discussion

Hence, we are interested in knowing each system’s recall percentage of named entities.
We use the method described in Currey et al. (2017)’s work to calculate such percent-
age1. First, they record words that are identical in source and reference sentence pairs
in test data, neglecting one-character tokens (e.g. punctuation marks) and case of text.
They then compute the percentage of these words occurring in the corresponding out-
put sentences.

There is a limitation to this method that not all named entities stay unchanged in source
and target sentences. For example, English names are phonetically converted to Chi-
nese characters (Wan and Verspoor, 1998) during translation. However, this problem
is mitigated to some extent in our data settings. All involved languages (Romanian,
English, German) are Latin/Roman characters based, so we assume more names and
acronyms can be preserved across languages. Thus we stick to their method and report
recall in Table 6.2. Tag-and-weight is not evaluated using RO-EN task, so it does not
have a recall percentage. Also, We use Test1 as the only reference for EN-DE because
we have found earlier that Test2 is not representative of our desired domain.

RO-EN EN-DE
vanilla 66.1% 85.8%

baseline (Wang et al., 2017b) 65.8% 87.2%
word weighting

log frequency ratio
66.9% 85.8%

sentence weighting
sum of log frequency ratio

67.2% 87.6%

tag-and-weight
2 tags and weighting

N/A 88.2%

Table 6.2: Recall of named entities for top performing systems

From the results, we find that all novel weighting schemes proposed by us have better
named entities recall, except for word weighting in EN-DE. The result looks promis-
ing, so we are able to confirm that through weighting in-domain sentences or words
more, the domain-specific named entities can be more easily produced in translation.

6.2.2 Average Length and Logarithmic Type-Token Ratio

Similar to Section 5.1, we compare average sentence length and logarithmic type-token
ratio of output translations with those of baseline and reference translations.

1Currey et al. (2017) named it “pass-through accuracy”, but it is recall in Information Retrieval.

55



6.2. Comparing Machine Translations with Reference

The output translations are the output from three techniques, word weighting using log-
arithmic word frequency ratio, sentence weighting by summing up logarithmic word
frequency ratio, and tag-and-weight with 2 tags. We have EN-DE output translation
for all three schemes and RO-EN for the first two, because the last scheme was not
evaluated using RO-EN task. Also, as we have discussed in the previous section that
EN-DE’s Test2 is not of high quality, so we only use Test1 as the reference for EN-DE.
The statistics of translations is presented in Table 6.3. Note that it is not meaningful to
compare across the two tasks.

RO-EN EN-DE
avg length log TTR avg length log TTR

reference (test, target) 11.77 0.877 16.80 0.881
vanilla 12.45 0.873 17.01 0.875

baseline 12.53 0.872 17.02 0.875
word weighting:

log frequency ratio
12.34 0.871 17.04 0.875

sentence weighting:
sum of log frequency ratio

12.36 0.871 16.99 0.875

tag-and-weight:
2 tags and weighting

N/A N/A 17.07 0.874

Table 6.3: Statistics of references and output translations from top-performing systems. Log
TTR denotes logarithmic type-token ratio.

From the table, we observe that all systems tend to produce longer translations than de-
sired, which is expected because out-of-domain data are much longer than in-domain
data in both tasks. Also, the logarithmic type-token ratio drops for all systems. This
means that NMT systems, in general, produce a smaller vocabulary than reference.
This observation agrees with Gong et al. (2019)’s claim on NMT’s bias towards com-
mon words.

Our novel word and sentence weighting schemes have some effect on regularising the
output sentence length for RO-EN, but not too obvious. In contrary, our proposed
tag-and-weight causes a slightly worsened sentence length for EN-DE pair. Besides,
there is no improvement in logarithmic type-token ratio from any of the approaches,
comparing to the vanilla system.

Hence we arrive at the conclusion that the two metrics are not improved by our pro-
posed methods, even though they result in higher BLEU. A possible explanation is that
our methods are centred around weighting probabilities of words, which helps little on
sentence length and lexical diversity.
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7 | Conclusion

7.1 Summary

In this project, we first introduce neural machine translation, corpora, evaluation and
the problem of domain mismatch. Then we review state-of-the-art domain adaptation
approaches, with a focus on sentence weighting based on cross-entropy difference.
With a thorough understanding of the advantages and limitations of current approaches,
we contribute to the research on sentence and word level cost weighting.

We improve sentence weighting by enlarging the difference between in-domain and
out-of-domain weights. We also design a new tag-and-weight method that combines
state-of-the-art multi-domain NMT and sentence weighting. Furthermore, we propose
novel word level weighting schemes, leveraging word frequencies and language model
scores.

Our approaches are evaluated using two tasks. The first task is translating from Ro-
manian to English and adapting news data to biomedical text, and the second task is
translating from English to German and adapting news data to TED talks. BLEU scores
from both tasks indicate that three of our approaches produce promising results. The
top-performing system, tag-and-weight using 2 tags and sentence weighting, achieves
significant improvement of 0.6 BLEU and 0.7 over both sentence weighting and multi-
domain system.

Following our in-depth quantitative and qualitative analysis, we find that the two test
sets for English to German task are not of consistent quality. The one taken from
IWSLT 2014 is not representative of in-domain data. Moreover, regarding the source
of improvement in BLEU, average sentence length and logarithmic token-type ratio do
not seem to improve (to get closer to reference data) for any system. Nonetheless, our
proposed approaches are significantly better at recalling named entities comparing to
vanilla and baseline systems.
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7.2. Future Work

7.2 Future Work

Our experiments show that word-level weighting has promising performance compar-
ing to sentence weighting. However, due to constrained time and resource, we could
do neither hyperparameter tuning nor trying out more word-level weighting schemes.
Our word weighting schemes are inspired by TF-IDF and language models. Future
work can explore other metrics like distributing Latent Dirichlet allocation (Blei et al.,
2003) scores at sentence-level.

Also, Behnke (2018)’s dynamic word weighting can be used for domain adaptation. It
can be incorporated in a way similar to fine-tuning and mixed fine-tuning introduced in
Section 2.7, where in-domain weights gradually increase until model converges. It is
also reasonable to resemble learning rate scheduling techniques, like cosine annealing
with warm restarts (Loshchilov and Hutter, 2016). Dynamic weighting can have two
potential advantages, to regularise the attention paid to in-domain words, as well as to
help a model to recover from local minimum during training.

Furthermore, we find that both tag-and-weight and sentence weighting by summing
up logarithmic word frequency ratios achieve a better recall for rare named entities.
This can be seen as a regularisation effect on the bias on common words caused by
maximum likelihood estimation (Gong et al., 2019). Thus it is sensible to apply our
techniques on not only domain adaptation problems, but also general neural machine
translation. It is possible that weighting, especially direct word weighting can pre-
vent vocabulary from shrinking too much through translation, by putting more than
proportionate weights on rare words.

Finally, we are also interested in comparing word-level weighting to how modern NMT
architectures like the attention mechanism model individual words. Behnke (2018)
provided an insightful starting point that weighting source side words for each tar-
get word could have a similar effect as attention mechanism. We suggest that, if
an attention-equivalent word weighting can be invented, the whole neural machine
translation community will benefit from it. The reason is indisputable, that the atten-
tion mechanism adds complexity to a model and consumes extra training resources,
whereas word-level weighting is interpretable and computationally cheap.
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