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Abstract

This paper presents the University of Edin-
burgh’s constrained submissions of English-
German and English-Hausa systems to the
WMT 2021 shared task on news translation.
We build En-De systems in three stages: cor-
pus filtering, back-translation, and fine-tuning.
For En-Ha we use an iterative back-translation
approach on top of pre-trained En-De models
and investigate vocabulary embedding map-
ping.

1 Introduction

We describe the University of Edinburgh’s par-
ticipation in English↔German (En↔De) and
English↔Hausa (En↔Ha) at the WMT 2021 news
translation task. We apply distinct sets of tech-
niques to the two language pairs separately, as the
two pairs are very different in terms of language
proximity and the availability of resources. We fol-
low the constrained condition where we only use
the provided data available to all participants.

For En↔De we first employ rule-based and
dual conditional cross-entropy filtering to clean the
datasets. Then we add to training back-translations
generated in a few ways: tagged, greedy, beam
search and sampling. We fine-tune our models on
past years’ test sets, and finally tune a few config-
urations: length normalization, test sentence split-
ting, and German post-processing.

For En↔Ha we adopt iterative back-translation,
where at each iteration we initialize the model pa-
rameters from an En-De model in the correspond-
ing direction (En→De for En→Ha and De→En for
Ha→En). These En-De models are trained in the
same way as those submitted to the En-De task, ex-
cept that their vocabulary includes subwords from
the Hausa language. Besides, we experiment with
vocabulary mapping at the embedding level.

Some configurations are kept consistent across
language pairs and systems. Sentences are tok-

enized using SentencePiece (Kudo and Richard-
son, 2018) with a 32K shared vocabulary, except
that we added a few extra tokens for tagged back-
translation. All models are trained following Mar-
ian’s Transformer-Big task preset (Vaswani et al.,
2017; Junczys-Dowmunt et al., 2018) unless other-
wise specified: 6 encoder and decoder layers, 16
heads, 1024 hidden embedding size, tied embed-
dings (Press and Wolf, 2017), etc.1

Section 2 and Section 3 describe the detailed
model building process for En↔De and En↔Ha
respectively. While awaiting human evaluation re-
sults, we summarize our automatic metric scores
on the WMT 2021 test sets computed by the task
organizers in Table 1.

Direction BLEU ChrF
En→De 29.90 0.59
De→En 51.78 0.66
En→Ha 14.81 0.45
Ha→En 14.89 0.42

Table 1: Automatic metric scores on WMT21 test com-
puted by the task organizers.

2 English↔German

2.1 Data and cleaning

English-German is considered to be a high-
resource language pair, with over 90 million par-
allel and hundreds of millions monolingual sen-
tences provided in the shared task. Following our
last year’s submission (Germann, 2020), we divide
the data into three categories, and we use all the
parallel data, as well as monolingual news from
2018 to 2020:

• High-quality parallel: News Commentary, Eu-
roparl and Rapid.

1https://github.com/marian-nmt/marian/
blob/master/src/common/aliases.cpp

https://github.com/marian-nmt/marian/blob/master/src/common/aliases.cpp
https://github.com/marian-nmt/marian/blob/master/src/common/aliases.cpp
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• Crawled parallel: ParaCrawl, WikiMatrix,
CommonCrawl, and WikiTitles.

• Monolingual news: News Crawl

The majority of parallel data are mined and
aligned sentences from the web (Bañón et al., 2020;
Schwenk et al., 2021), so our first step is corpus fil-
tering to remove noisy sentences which could harm
neural machine translation (Khayrallah and Koehn,
2018). We run rule-based filtering using FastText
language identification (Joulin et al., 2016), and var-
ious handcrafted features such as sentence length,
character ratio and length ratio. Similar rules are
applied on the monolingual data, omitting the fea-
tures designed for parallel data. More details can be
found in our cleaning script which is made public.2

We then train seed Transformer-Base models on
the filtered high-quality data, as well as the crawled
data separately, to (self-)score translation cross-
entropy of the crawled parallel sentences. This
enables us to rank and filter out sentences by their
dual conditional cross-entropy (Junczys-Dowmunt,
2018). The method prefers the sentences in a pair
to have low and similar translation cross-entropy
given each other. After empirical trials, we find it is
always better to score using models trained on the
high-quality data, and we choose to keep the best
75% of the crawled data. The filtering efforts are
reported in Table 2. Next, we train Transformer-
Big models on the combination of filtered high-
quality and crawled data. These models serve as
baselines and are used for back-translation later.

Amount of
crawled

Scoring
model De→En En→De

top 25%
high-qual 41.47 -
crawled 39.35 -

top 50%
high-qual 41.64 43.68
crawled 41.51 -

top 75%
high-qual 42.15 43.40
crawled 41.90 -

all - 42.02 42.70

Table 2: BLEU of filtering experiments on WMT19 test
used as dev.

2.2 Back-translation

Since its introduction, back-translation (Sennrich
et al., 2016) has been widely used to boost NMT.

2https://github.com/browsermt/
students/tree/master/train-student/clean

We use ensembles of our best seed and baseline
models trained on the filtered data, to generate
back-translations from the monolingual news data
from 2018 to 2020, hoping that the domains are
similar to that of the test. For En→De we mix
back-translations generated using greedy search,
beam search, and sampling; for De→En, we adopt
tagged back-translation (Caswell et al., 2019).

After merging the original and back-translated
data, for each direction we train 4 standard
Transformer-Big models, as well as a model with 8
encoder layers and 4 decoder layers. Specifically
for De→En, we have an extra pre-layer normalized
variant.

As we observed last year, validation BLEU does
not improve after we add back-translated data to
training. As a result, after the models converge, we
continue training them on filtered parallel data only.
The models’ validation BLEU scores3 on WMT19
test are displayed in Table 3.

Configuration De→En En→De
Baseline 42.2 43.4

+ BT 41.8 43.0
+ cont. training 42.5 43.6

Table 3: Average BLEU scores of BT experiments on
WMT19 test used as dev.

2.3 Fine-tuning and submission

We grid search on length normalization during de-
coding, and find 1.2 to be ideal for En→De and
0.8 for De→En. Particularly for En→De, we have
two more steps to make German text read more
natural: 1) continued training on 25% title-cased
parallel data to improve headline translation and 2)
post-processing on German quotes to make them
consistent.

Previous submissions show that fine-tuning on
past years’ test data helps model performance
(Schamper et al., 2018; Koehn et al., 2018). In
the early years of WMT news translation tasks, the
test sentence pairs can originate in either source or
target language, and are translated and merged into
one set. However, the current evaluation is on trans-
lating sentences originally in the source language
only. Therefore, we experiment with fine-tuning
on the combined sets, as well as on sentence pairs
originated from the source language. We fine-tune

3sacreBLEU (Post, 2018) with signature BLEU+
case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1

https://github.com/browsermt/students/tree/master/train-student/clean
https://github.com/browsermt/students/tree/master/train-student/clean


111

all our models on WMT 2008-2019 test sets and
validate on WMT 2020 test set.

While the training data contain mainly one sen-
tence per line, the test set can have multiple sen-
tences in the same segment. As a result, we split
each test instance into single sentences, translate,
and rejoin them. We experiment with fine-tuning
and sentence splitting on the 8-encoder-4-decoder
variant for both languages. Table 4 indicates that
the model achieves the best BLEU (and a signif-
icant improvement over BT baseline) if we fine-
tune it on previous test sentences originating in the
source language only, and split long sentences in
both validation and test sets.

FT
on

Dev
split

Test
split De→En En→De

BT baseline 30.8 31.9
none X 41.7 35.2
all 34.7 -
all X 41.1 -
all X 31.2 -
all X X 41.9 36.7

orig. X X 42.5 36.9

Table 4: BLEU of fine-tuning and sentence-splitting ex-
periments on WMT20 test

For each translation direction, we apply the best
configuration to each model and ensemble them by
averaging their predictions post-softmax. Overall,
we have a 5-model ensemble for En→De, and a
6-model ensemble De→En.

3 English↔Hausa

3.1 Data

The main sources of English-Hausa parallel data
are OPUS (Tiedemann, 2012) and ParaCrawl.
We also include data from WikiTitles4 and the
Khamenei5 corpora, which are however much
smaller. In total, we gather 759,061 parallel sen-
tences. For back-translation, we use 9.5 mil-
lion monolingual Hausa sentences from Common
Crawl, Extended Common Crawl, and News Crawl
provided by the task organizers. We randomly se-
lect 50 million English monolingual sentences from
the News Crawl collections from 2018, 2019, and
2020.

4http://data.statmt.org/wikititles/v3/
5http://data.statmt.org/wmt21/

translation-task/ha-en/khamenei.v1.
ha-en.tsv

For training, we use a mix of back-translated
monolingual data and parallel data. Since the
dataset sizes differ substantially, we over-sample
the parallel data to achieve a balanced mix: 10×
for English→Hausa, and 50× for Hausa→English.
Similar to our En-De models, we used tagged back-
translation to distinguish synthetic and authentic
sentences in the data.

3.2 Iterative back-translation and fine-tuning
In our experiments, we combine a transfer learn-
ing approach (Zoph et al., 2016; Kocmi and Bojar,
2018) with 3 iterations of back-translation (Hoang
et al., 2018; Edunov et al., 2018). In each iteration,
we initialize the En→Ha model with a pre-trained
En→De Transformer-Big model (and vice versa
for the other direction). Then, we fine-tune the
model on the English-Hausa data created by the
model from the previous back-translation iteration
(the initial model for the first iteration is fine-tuned
on parallel data only).

We notice that the model generates a large num-
ber of empty translations. We suppress this issue by
taking the second-best candidate translation from
the n-best list if the first one is empty. Another prob-
lem is heavy overfitting in the models. In many
translations, the sentences begin with the prefix
“Never miss an important update!”, followed by the
actual translation. Unfortunately, we only noticed
this issue after the submission.

3.3 Vocabulary embedding mapping
An additional approach we investigate is mapping
the Hausa vocabulary to the German embeddings of
the En→De model, when initializing the En→Ha
model. We train the models with a 32K Senten-
cePiece vocabulary obtained from datasets in all
three languages. Using the frequency-based metric
introduced by (Wang et al., 2020) we assign each
SentencePiece token to an English, German, Hausa
or joint vocabulary. This results in 9192 German to-
kens, 6485 Hausa tokens and a joint vocabulary of
approximately 11k. Having established a separate
Hausa and German vocabulary it is then possible
to map between the embeddings of the two.

In order to map the vocabularies, we indepen-
dently train BWEs (bilingual word embeddings)
using an implementation of Bivec (Luong et al.,
2015) combined with FastText (Bojanowski et al.,
2017). This implementation uses a joint learning
objective as described by Liu et al. (2020) utilising
alignments combined with sub-word information.

http://data.statmt.org/wikititles/v3/
http://data.statmt.org/wmt21/translation-task/ha-en/khamenei.v1.ha-en.tsv
http://data.statmt.org/wmt21/translation-task/ha-en/khamenei.v1.ha-en.tsv
http://data.statmt.org/wmt21/translation-task/ha-en/khamenei.v1.ha-en.tsv
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In lieu of a parallel De-Ha dataset an En→De NMT
model is used to translate the English side of the
En-Ha dataset. We constrain SentencePiece encod-
ing using the previously extracted vocabularies for
example the Huasa data is encoded using only the
Hausa tokens and the joint tokens. Once both sides
are encoded FastAlign is used to extract automatic
alignments and the BWEs are trained.

We first map the Hausa tokens to their nearest
neighbour using the Cross-Domain Similarity Lo-
cal Scaling (Lample et al., 2018) distance metric
in the order of Hausa tokens’ frequency, and only
permit a German token to be mapped to exactly
one Hausa token. For tokens that do not have a
one-to-one mapping, we adapt Gu et al. (2018)’s
approach, whereby the embedding of a Hausa to-
ken is initialized to the weighted sum of all German
embeddings. The weights are given by a probabil-
ity distribution derived from the distance of the
Hausa token to each German token in the bilingual
embedding space. It is worth noting that we only
map between the tokens in the Hausa and German
vocabularies not any of the joint tokens. Finally, we
initialize the embedding table using the new embed-
dings and remove all tokens identified as German.
After initialization, we fine-tune the model using
the parallel and back-translated data as described
previously.

Our experiments show that although initializing
the embedding table using a mapping-based ap-
proach results in faster model convergence, it does
not improve the final BLEU score compared to just
fine-tuning from the En-De models. This was ob-
served for both the parallel data and the combined
parallel and back-translated data. The outputs of
the mapping approach to the baseline for the Ha-En
system are qualitatively very similar and indicates
that while the embedding mapping increases con-
vergence there is no knowledge transfer from the
German embeddings.

4 Conclusion

We describe our English-German and English-
Hausa submissions to the news translation task at
WMT 2021. For the En↔De task, fine-tuning and
splitting test instances significantly boosts BLEU
while back-translation alone does not help. In the
En↔Ha task, we experiment with interesting low
resource NMT techniques, but unfortunately, our
submission contains translations from overfitted
models.
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