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Main Contributions
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The Unified Model

The model learns to encode definitions and words using a shared layer, and
then generates both forms via multi-tasking to accomplish reverse dictionary
and definiion modelling separately. Such a trained system resembles a dual-
way neural dictionary.

Unification enabled 1) extra learning objectives like reconstruction and embed-
ding similarity; 2) shared encoder and decoder embeddings.
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Figure 1. The unified model architecture.

We present a unified model for two reciprocal tasks: reverse dictionary and definition modelling. The model
achieves strong automatic and human evaluation results without relying on external human-annotated data.

Definition Human Evaluation

Our model notably outperforms a Transformer baseline in both types of human
evaluation on definition generation:

1. reference-less: pick the preferred output based on the query word.
2. reference-based: pick the preferred output based on the reference.

reference-based
32 (40%)
42 (53%)

reference-less
25 (31%)
50 (63%)

Transformer
unified

Table 1. Chances a model’s output is preferred by human evaluators.

Ablation Training Dynamics

We study training objective ablation with the unified model. 1-task refers to
using a single reverse dictionary or definitton modelling objective; 3-task refers
to disabling reconstruction tasks; 5-task is using all objectives.
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Figure 2. Training losses of the unified model with different objectives

Experiments and Results

(a) Reverse dictionary results on Hill et al’s data with past results from Zhang et al.
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Table 2. Experimental results on reverse dictionary (left) and definition modelling (right).
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