
Exploring Data Augmentation for Code Generation Tasks
Pinzhen Chen1 Gerasimos Lampouras2

1 School of Informatics, University of Edinburgh pinzhen.chen@ed.ac.uk
2 Noah’s Ark Lab, Huawei gerasimos.lampouras@huawei.com

Overview

We have code PLMs and abundant code data on GitHub, but

not much for specific downstream tasks like code translation

and summarization. Hence we explore data augmentation:

1. monolingual - abundant resources.

2. multilingual - similarity between programming languages

3. numerical - code correctness.

Language Utilization

Programming languages share higher similarities, such as num-

bers, syntax tokens, etc. We study the use of other languages

in twoways: autoencoding the target language for translation,

and multilingual training for code summarization.

translation w/
autoencoding JavaC#

Java
multilingual code
summarization

Ruby,
JavaScript

Go
Python

Java
PHP

text

Data synthesis

We apply back-translation to obtain pseudo-parallel data from

monolingual code for translation. For code summarization, we

first reverse its data to train a multilingual text-to-code gener-

ator, then generate code in arbitrary programming languages

to pair with genuine text summaries.

Numeric Awareness

We propose a novel numeric encodingmethod to let numbers

pass through the network as illustrated in Figure 1. Apart from

this, for code translation, we swap numbers on both input and

output ends consistently to create extra data.

inversing code-to-text data which has source side
code available in multiple programming languages
(PL1 → NL, . . . , PLn → NL), we train a mul-
tilingual text-to-code generator, which outputs a
designated programming language given a natu-
ral language summary and a target language tag
(NL+ tag{1,...n} → {PL1, . . . , PLn}). This gen-
erator can iteratively produce code in different PLs
by inputting summaries regardless of the original
PL → NL alignment. These synthesized data,
despite having a lower quality, can augment the
training data for summarization.

2.2 Utilization of multilinguality
Currey et al. (2017) suggested that including mono-
lingual data in the target language as an additional
autoencoding (AE) objective benefits translation
models trained on limited data. We migrate this ob-
jective to code translation by mixing PLx → PLy

and PLy → PLy data. This effectively builds a
multilingual encoder that enables knowledge trans-
fer, given the high similarity between programming
languages, namely the overlap of numerals, syntax
tokens, reserved keywords, etc. This process con-
strains the decoder side to a single programming
language PLy to not add complexity.

In code summarization, as the target NL is fun-
damentally divergent from the input PL, the au-
toencoding objective might not be useful. In con-
trast, we train a “multilingual” code summarization
model {PL1, . . . , PLn} → NL where the system
takes an arbitrary programming language to pro-
duce a natural language summary. Such a many-to-
one model allows encoder knowledge sharing too
and exposes the decoder to more NL summaries.

2.3 Numeric awareness
Referenced variables and their values are unique
components of programming languages; to en-
hance understanding of these values, previous
works on pre-training suggested attending to ap-
propriate modalities, e.g. data flow (Guo et al.,
2021). Such sophisticated handling of values might
not be necessary for code translation, as copying
them over to the target suffices. However, given
a small training size, any translation model will
still only be exposed to sparse numerical input. To
increase model robustness, we augment the data
by creating new instances where, in all code to-
kens containing a number, each digit is randomly
replaced with another digit, consistently on both
the source and target sides. We do not distinguish

PLM encoder

51enc("5")

"int" "a" "=" "num" "/" "5" ";"

00enc("a")

feed forward layer

encoder out encoder out

Figure 1: Numeric encoding with a PLM encoder, ex-
emplifying how “a” and “5” are encoded differently.

between purely numerical tokens and tokens in-
cluding a number. For instance, a variable “num1”
could become “num4” in the augmented code pair.
The method guarantees that the number-swapped
synthetic code is grammatical and compilable.

Apart from numerical augmentation, we propose
to include input numbers directly in the encoder
output as mathematical values, complementary to
their string embedding representations. As illus-
trated in Figure 1, we append two dimensions to the
original encoder output. Particularly, one dimen-
sion (red, left) is a binary value (0/1) indicating
whether the respective input is a number, while
the other dimension (green, right) inherits the in-
put’s value, or 0 if the input is not numeric. The
expanded embedding can be reduced to its origi-
nal size via a feed-forward layer; such a change
requires no modification to the pre-trained encoder.

3 Experiments

3.1 Tasks, datasets and evaluation

We benchmark our methods on the code task suite
CodeXGLUE (Lu et al., 2021). Its translation
task uses code originally developed in Java and
then migrated to C#, so the corresponding C#-
Java snippets are considered parallel. Training,
validation, and test sizes are 10K, 0.5K, and 1K.
For back-translation, we translated 377K lines of
monolingual Java, albeit out-of-domain, from other
CodeXGLUE tasks, into C#. To ensure that the
target side consists of genuine data, we only exper-
imented with the C#→Java direction as there is no
other C# code in the benchmark for BT.

The summarization task employs CodeSearch-
Net (Husain et al., 2019) and covers six languages:
Ruby, JavaScript, Go, Python, Java, and PHP. Train-
ing sizes range from 25K to 250K, totalling 908K;
validation and test sets are between 1K and 15K.
We performed multilingual back-translation by re-

Figure 1. Illustration of our number encoding proposal. A flag

(red) indicates whether the input is a number; then appended

(green) is the number itself, or 0 if not numeric.

Task, Data, and Metrics

We present the results of C#-to-Java translation and summa-

rization using CodeBERT. Please check out our paper for train-

ing configurations, more results on other PLMs, as well as our

explorations on the code synthesis task.

Code outputs are evaluated by exact line match, BLEU and

CodeBLEU, whereas text summaries are evaluated by BLEU.

Experiments and Results

BLEU
exact

match
CodeBLEU

Token Acc.

num. non-num.

baseline 72.92 57.4 78.93 74.64 87.54

back-translation 77.34 61.4 83.36 - -

+ autoencoding 77.60 61.8 83.47 - -

numeric augmentation 74.00 59.5 79.43 76.14 87.30

+ encoding & scaling 74.16 59.1 79.84 75.22 87.32

all combined 77.96 62.0 83.63 78.01 88.79

Table 1. Code translation with CodeBERT.

BLEU

Ruby JS Go Python Java PHP Avg.

monolingual (baseline) 12.39 14.13 17.89 18.22 18.66 25.14 17.73

+ rule-translation - 15.35 - - - - -

+ back-translation 13.76 15.00 18.30 18.60 19.64 25.69 18.50

multilingual 14.93 15.53 18.68 18.71 19.70 25.96 18.92

+ rule-translation 14.58 15.65 18.77 18.95 19.86 25.98 18.97

+ back-translation 14.91 15.81 18.88 18.97 19.69 26.10 19.06

Table 2. Code summarization with CodeBERT.

Translation Code Style
// test #85
C# source ... GetEscherRecord(int index){return escherRecords[index];}
Java reference ... getEscherRecord(int index){return escherRecords.get(index);}
baseline ... getEscherRecord(int index) {return escherRecords[index];}
DA model ... getEscherRecord(int index) {return escherRecords.get(index);}

// test #90
C# source public virtual IQueryNode GetChild(){return GetChildren()[0];}
Java reference public QueryNode getChild() {return getChildren().get(0);}
baseline public QueryNode getChild() {return getChildren() == 0);}
DA model public QueryNode getChild() {return getChildren().get(0);}

// test #978
C# source public virtual SrndQuery GetSubQuery(int qn) { return m_queries[qn]; }
Java reference public SrndQuery getSubQuery(int qn) {return queries.get(qn);}
baseline public SrndQuery getSubQuery(int qn) {return queries[qn];}
DA model public SrndQuery getSubQuery(int qn) {return queries.get(qn); }

Table 5: C#-Java output translations of element retrieval methods, before and after data augmentation.Figure 2. Samples before and after augmentation. Our DA model follows the Java convention

where element retrieval is done by get().

Translation Numerical Consistency
// test #131
C# source public ScaleClusterRequest(): base("CS", "2015-12-15", "ScaleCluster"

, "cs", "openAPI"){UriPattern = "/clusters/[ClusterId]";
Method = MethodType.PUT;}

Java reference public ScaleClusterRequest() {super("CS", "2015-12-15", "ScaleCluster"
, "csk");setUriPattern("/clusters/[ClusterId]");
setMethod(MethodType.PUT);}

baseline publicscaleClusterRequest() {super("CS", "2018-12-15", "ScaleCluster"
, "cs");setUriPattern("/clusters/[ClusterId]");
setMethod(MethodType.PUT);}

DA model public ClusterRequest() {super("CS", "2015-12-15", "ScaleCluster"
, "cs");setUriPattern("/clusters/[ClusterId]");
setMethod(MethodType.PUT);}

// test #436
C# source public void CopyTo(byte[] b, int o){FormatHexByte(b, o + 0, w1);

FormatHexByte(b, o + 8, w2);FormatHexByte(b, o + 16, w3);
FormatHexByte(b, o + 24, w4);FormatHexByte(b, o + 32, w5);}

Java reference public void copyTo(byte[] b, int o) {formatHexByte(b, o + 0, w1);
formatHexByte(b, o + 8, w2);formatHexByte(b, o + 16, w3);
formatHexByte(b, o + 24, w4);formatHexByte(b, o + 32, w5);}

baseline public void copyTo(byte[] b, int o) {formatHexByte(b, o1);
formatHexByte(b, o2);formatHexByte(b, o2);
formatHexByte(b, o3);formatHexByte(b,o + 24, w4);
formatHexByte(b, o + 32, w5);}

DA model public void copyTo(int[] b, int o) {formatHexByte(b, o + 0, w1);
formatHexByte(b, o + 8, w2);formatHexByte(b, o + 16, w3);
formatHexByte(b, o + 24, w4);formatHexByte(b, o + 32, w5);}

Figure 3. Samples before and after augmentation. Our DA model maintains number agreement.

Acknowledgements

Pinzhen Chen is funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350 and from UK Research and Innovation (UKRI) under the UK government’s Horizon Europe

funding guarantee [grant number 10052546 - High Performance Language Technologies]. This presentation is partially funded by Institute for Language, Cognition and Computation, School of Informatics, University of Edinburgh. We

thank the MindSpore team for providing technical support.


